Skip to main content
Log in

The Mechanism of Action of the Extracellular Bacteriolytic Enzymes of Lysobacter sp. on Gram-Positive Bacteria: The Role of the Cell Wall Anionic Polymers of Target Bacteria

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The study of the extracellular bacteriolytic enzymes of Lysobacter sp. showed that they can efficiently hydrolyze the peptidoglycan of gram-positive bacteria provided that there is an electrostatic interaction of these enzymes with the cell wall anionic polymers, teichoic and teichuronic acids in particular. The hydrolytic action of bacteriolytic enzymes on the cell wall largely depends on the negative charge of the teichoic and teichuronic acids rather than on their chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Stepnaya, O.A., Ledova, L.A., and Kulaev, I.S., Bacteriolytic enzymes, Usp. Biol. Khim., 1999, vol. 39, pp. 327–354.

    Google Scholar 

  2. Shockman, G.D. and Holtje, J.-V., Microbial Peptidoglycan (Murein) Hydrolases, Bacterial Cell Wall, Ghuysen, J.-M. and Hakenbeck, R., Eds., Amsterdam: Elsevier Science BV, 1994, pp. 131–166.

    Google Scholar 

  3. Sitkin, B.V., Lysanskaya, V.Ya., Tsfasman, I.M., and Stepnaya, O.A., The Structure of Peptidoglycan from Lysobacter sp., a Producer of Extracellular Bacteriolytic Enzymes, Mikrobiologiya, 2003, vol. 72, pp. 136–137.

    Google Scholar 

  4. Stepnaya, O.A., Begunova, E.A., Tsfasman, I.M., and Kulaev, I.S., The Bacteriolytic Enzyme Preparation Lysoamidase: Purification and Some Physicochemical Properties of Extracellular Muramidase from Xanthomonas sp., Biokhimiya, 1996, vol. 61, no. 4, pp. 648–655.

    Google Scholar 

  5. Stepnaya, O.A., Begunova, E.A., Tsfasman, I.M., and Kulaev, I.S., The Bacteriolytic Enzyme Preparation Lysoamidase: Purification and Some Properties of Bacteriolytic L1 Peptidase, Biokhimiya, 1996, vol. 61, no. 4, pp. 656–663.

    Google Scholar 

  6. Stepnaya, O.A., Severin, A.I., and Kulaev, I.S., Some Physicochemical Properties of Lytic L2 Proteinase Isolated from the Enzyme Complex Lysoamidase of a Bacterium from the Family Pseudomonadaceae, Biokhimiya, 1986, vol. 51, pp. 909–915.

    Google Scholar 

  7. Stepnaya, O.A., Ledova, L.A., and Kulaev, I.S., The Bacteriolytic Enzyme Preparation Lysoamidase: The Interaction Nature of Constituting Enzymes and Polysaccharide, Biokhimiya, 1993, vol. 58, pp. 1523–1528.

    Google Scholar 

  8. RF Patent no. 2193063.

  9. White, D., The Physiology and Biochemistry of Prokaryotes, New York: Oxford Univ. Press, 1995.

    Google Scholar 

  10. Pooley, H.M., Abellan, F.-X., and Karamata, D., Cell Wall Teichoic Acid, Peptidoglycan Synthesis and Morphogenesis in Bacillus subtilis, Bacterial Growth and Lysis, de Pedro, M.A. et al., Eds., New York: Plenum, 1994, pp. 385–392.

    Google Scholar 

  11. Holtje, G.V. and Tomasz, A., Specific Recognition of Choline Residues in the Cell Wall Teichoic Acid by the N-Acetylmuramyl-L-Alanine Amidase of Pneumococcus, </del>J. Biol. Chem., 1975, vol. 250, pp. 6072–6076.

    PubMed  Google Scholar 

  12. Podvin, L., Reysst, G., Hubert, J., and Sebald, M., Presence of Choline in Teichoic Acid of Clostridium acetobutylicum, J. Gen. Microbiol., 1988, vol. 134, no. 6, pp. 1603–1609.

    Google Scholar 

  13. Tomasz, A., Biological Consequence of the Replacement of Choline by Ethanolamine in the Cell Wall of Pneumococcus: Chain Formation, Loss of Transformability, and Loss Autolysis, Proc. Natl. Acad. Sci. USA, 1968, vol. 59, no. 1, pp. 86–92.

    PubMed  Google Scholar 

  14. Lindsay, B. and Glaser, L., Characterization of the NAcetylmuramic Acid L-Alanine Amidase from Bacillus subtilis, J. Bacteriol., 1976, vol. 127, no. 2, pp. 803–811.

    PubMed  Google Scholar 

  15. Tempest, D.W., Dicks, J.W., and Elwood, D.C., Influence of Growth Condition on the Concentration of Potassium in Bacillus subtilis var. niger and Its Possible Relationship to Cellular Ribonucleic Acid, Teichoic Acid and Teichuronic Acid, Biochem. J., 1968, vol. 106, pp. 237–243.

    Google Scholar 

  16. Shaw, D., Mirelman, D., Chatterjee, N.N., and Park, J.T.,Ribitolteichoic Acid Synthesis in Bacteriophage-Resistant Mutants of Staphylococcus aureus H, J. Mol. Biol., 1970, vol. 245, no. 19, pp. 5101–5106.

    Google Scholar 

  17. Schleifer, K.N. and Kandler, O., Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications, Bacteriol. Rev., 1972, vol. 36, pp. 407–477.

    PubMed  Google Scholar 

  18. Streshinskaya G.M., Naumova I.B., Panina L.I. The Chemical Composition of the Cell Wall of Streptomyces chrysomallus Producing the Antibiotic Aurantin, Mikrobiologiya, 1979, vol. 48, pp. 814–818.

    Google Scholar 

  19. Rogers, H.J., Perkins, H.R., and Ward, J.B., Structure of Peptidoglycan, Microbial Cell Walls and Membranes, London: Chapman and Hall, 1980, pp. 190–214.

    Google Scholar 

  20. Naumova, I.B. and Shashkov, A.S., The Cell Wall Anionic Polymers of Gram-Positive Bacteria, Biokhimiya, 1997, vol. 62, no. 8, pp. 947–982.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepnaya, O.A., Begunova, E.A., Tsfasman, I.M. et al. The Mechanism of Action of the Extracellular Bacteriolytic Enzymes of Lysobacter sp. on Gram-Positive Bacteria: The Role of the Cell Wall Anionic Polymers of Target Bacteria. Microbiology 73, 404–409 (2004). https://doi.org/10.1023/B:MICI.0000036984.97267.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MICI.0000036984.97267.4e

Navigation