, Volume 73, Issue 3, pp 255–259 | Cite as

Carbonic Anhydrase of the Alkaliphilic Cyanobacterium Microcoleus chthonoplastes

  • E. V. Kupriyanova
  • A. G. Markelova
  • N. V. Lebedeva
  • L. M. Gerasimenko
  • G. A. Zavarzin
  • N. A. Pronina


The activity of carbonic anhydrase (CA) was studied in different cell fractions of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. The activity of this enzyme was found in the soluble and membrane protein fractions, as well as in intact cells and in a thick glycocalyx layer enclosing the cyanobacterium cells. The localization of CA in glycocalyx of M. chthonoplastes was shown by western blot analysis and by immunoelectron microscopy studies with antibodies to the thylakoid CA from Chlamydomonas reinhardtii (Cah3). At least one of the CA forms occurring in M. chthonoplastes CA was shown to be an α-type enzyme. A possible mechanism of the involvement of the glycocalyx CA in calcification of cyanobacteria is discussed.

alkaliphilic cyanobacteria of soda lakes Microcoleus chthonoplastes carbonic anhydrases glycocalyx calcification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zavarzin, G.A., Rise of the Biosphere, Vestn. Ross. Akad. Nauk, 2001, vol. 71,no. 11, pp. 988-1001.Google Scholar
  2. 2.
    Zavarzin, G.A., Microbial Geochemical Calcium Cycle, Mikrobiologiya, 2002, vol. 71, pp. 5-22.Google Scholar
  3. 3.
    Kupriyanova, E.V., Lebedeva, N.V., Dudoladova, M.V., Gerasimenko, L.M., Alekseeva, S.G., Pronina, N.A., and Zavarzin, G.A., Activity of Carbonic Anhydrases of Alkaliphilic Cyanobacteria of Soda Lakes, Fiziol. Rast., 2003, vol. 50,no. 1, pp. 14-22.Google Scholar
  4. 4.
    Pronina, N.A. and Borodin, V.V., CO2-Stress and CO2-Concentration Mechanism: Investigation by Means of Photosystem-Deficient and Carbonic Anhydrase-Deficient Mutants of Chlamydomonas reinhardtii, Photosynthetica, 1993, vol. 28, pp. 515-522.Google Scholar
  5. 5.
    Kaplan, A. and Reinhold, L., CO2 Concentrating Mechanism in Photosynthetic Microorganisms, Annu. Rev. Plant Mol. Biol., 1999, vol. 50, pp. 539-570.Google Scholar
  6. 6.
    Park, Y., Karlsson, J., Rojdestvenski, I., Pronina, N., Klimov, V., Oquist, G., and Samuelsson, G., Role of a Novel Photosystem II-Associated Carbonic Anhydrase in Photosynthetic Carbon Assimilation in Chlamydomonas reinhardtii, FEBS Lett., 1999, vol. 444, pp. 102-105.Google Scholar
  7. 7.
    Badger, M., CO2 Acquisition, Concentration and Fixation in Cyanobacteria and Algae, Photosynthesis: Physiology and Metabolism, Leegood, R.C., Sharkey, T.D., and Caemmerer, S., Eds., Dordrecht: Kluwer Academic, 2000, pp. 369-397.Google Scholar
  8. 8.
    Lucas, J.M. and Knapp, L.K., A Physiological Evaluation of Carbon Sources for Calcification in the Octocoral Leptogordia virgulata (Lamark), J. Exp. Biol., 1997, vol. 200, pp. 2653-2662.Google Scholar
  9. 9.
    Numer, N.A., Guan, Q., and Merrett, M.J., Extra-and Intra-Cellular Carbonic Anhydrase in Relation to Culture Age in a High-Calcifying Strain of Emiliania huxleyi Lohmann, New Phytol., 1994, vol. 126, pp. 601-607.Google Scholar
  10. 10.
    Hewett-Emmett, D. and Tashian, R.E., Functional Diversity, Conservation and Convergence in the Evolution of α-, β-, and γ-Carbonic Anhydrase Gene Families, Mol. Phylogenet. Evol., 1996, vol. 5, pp. 50-77.Google Scholar
  11. 11.
    Smith, K.S., Jakubzick, C., Whittam, T.S., and Ferry, J.G., Carbonic Anhydrase Is an Ancient Enzyme Widespread in Prokaryotes, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 15184-15189.Google Scholar
  12. 12.
    Smith, K.S. and Ferry, J.G., Prokaryotic Carbonic Anhydrases, FEMS Microbiol. Rev., 2000, vol. 24, pp. 335-366.Google Scholar
  13. 13.
    Gerasimenko, L.M., Dubinin, A.V., and Zavarzin, G.A., Alkaliphilic Cyanobacteria of Tuva Soda Lakes and Their Ecophysiology, Mikrobiologiya, 1996, vol. 65, pp. 844-849.Google Scholar
  14. 14.
    Pronina, N.A. and Semenenko, V.E., Localization of Membrane-Bound and Soluble Forms of Carbonic Anhydrase in Chlorella Cells, Fiziol. Rast. (Moscow), 1984, vol. 31, pp. 241-251.Google Scholar
  15. 15.
    Markelova, A.G., Vladimirova, M.G., and Semenenko, V.E., Ultrastructural Localization of RuBPC in Algal Cells, Fiziol. Rast. (Moscow), 1990, vol. 37, pp. 907-911.Google Scholar
  16. 16.
    Graham, D. and Smillie, R.M., Carbonate Dehydratase in Marine Organisms of the Great Barrier Reef, Aust. J. Plant Physiol., 1976, vol. 3, pp. 113-119.Google Scholar
  17. 17.
    Zavarzin, G.A., Epicontinental Soda Lakes as Possible Biotopes for Terrestrial Biota Formation, Mikrobiologiya, 1993, vol. 62, pp. 789-800.Google Scholar
  18. 18.
    Rozanov, A.Yu., Fossil Bacteria and a New Approach to the Processes of Sedimentogenesis, Sorosovskii Obrazovatel'nyi Zh., 1999, no. 10, pp. 63-67.Google Scholar
  19. 19.
    Microbial Sediments, Riding, R.E. and Awramik, S.M., Eds., Berlin: Springer, 2000.Google Scholar
  20. 20.
    Soltes-Rak, E., Mulligan, M.E., and Coleman, J.R., Identification and Characterization of Gene Encoding a Vertebrate-Type Carbonic Anhydrase in Cyanobacteria, J. Bacteriol., 1997, vol. 179, pp. 769-774.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • E. V. Kupriyanova
    • 1
  • A. G. Markelova
    • 1
  • N. V. Lebedeva
    • 1
  • L. M. Gerasimenko
    • 2
  • G. A. Zavarzin
    • 2
  • N. A. Pronina
    • 1
  1. 1.Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscowRussia
  2. 2.Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscowRussia

Personalised recommendations