Skip to main content
Log in

Generation of Supercontinuum and Spectrum Broadening in Holey Fibers Subjected to Radiation from Continuous Femtosecond Visible and Infrared Lasers

  • Published:
Measurement Techniques Aims and scope

Abstract

Supercontinuum generation in holey fibers manufactured at the University of Bath (Great Britain) and at the Institute of Radioengineering and Electronics of the Russian Academy of Sciences is produced through use of a Ti:sapphire femtosecond laser. Broadening of the radiation spectrum of a Cr:forsterite femtosecond laser (λ = 1250 nm) is observed in these fiber samples. The present study is part of a program intended for the creation of an optical femtosecond synthesizer stabilized relative to a methane optical frequency standard (λ = 3390 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. G. Basov and M. A. Gubin, IEEE J. Select. Top. Quantum Electron., 6, 857 (2000).

    Google Scholar 

  2. K. M. Evenson et al., Appl. Phys. Lett., 22, 192 (1973).

    Google Scholar 

  3. Y. S. Domnin et al., IEEE Trans. Instrum. Meas., 29, 264 (1980).

    Google Scholar 

  4. C. O. Weiss et al., IEEE J. Quantum Electron., 24, 1970 (1988).

    Google Scholar 

  5. A. Clairon et al., IEEE Trans. Instrum. Meas., 34, 265 (1985).

    Google Scholar 

  6. T. Udem et al., Phys. Rev. Lett., 82, 3568 (1999).

    Google Scholar 

  7. D. J. Jones et al., Science, 288, 635 (2000); S. T. Cundiffe, J. Ye, and J. L. Hall, Rev. Sci. Instrum., 72, 3749 (2001).

    Google Scholar 

  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett., 25, 25 (2000).

    Google Scholar 

  9. R. Holzwarth, T. Udem, and T. W. Hansch, Phys. Rev. Lett., 85, 2264 (2000).

    Google Scholar 

  10. S. A. Diddams et al., Opt. Lett., 27, 58 (2002).

    Google Scholar 

  11. Ye. V. Baklanov and V. P. Chebotaev, Appl. Phys., 12, 97 (1977).

    Google Scholar 

  12. J. N. Ekstein, A. I. Ferguson, and T. W. Hansch, Phys. Rev. Lett., 40, 847 (1978).

    Google Scholar 

  13. M. A. Gubin et al., IEEE J. Quantum Electron., 31, 2177 (1995).

    Google Scholar 

  14. S. N. Bagaev, A. K. Dmitriev, and P. V. Pokasov, Laser Physics, 7, 989 (1997).

    Google Scholar 

  15. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett., 24, 584 (1970).

    Google Scholar 

  16. J. C. Knight et al., Opt. Lett., 21, 1547 (1996).

    Google Scholar 

  17. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett., 25, 1415 (2000).

    Google Scholar 

  18. D. A. Akimov et al., Appl. Phys., 74, 307 (2002).

    Google Scholar 

  19. M. A. Gubin et al., Frequency Standards and Metrology, Proc. 6th Symposium, World Scientific Publishing, Singapore (2002), p. 453.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kryukov, P.G., Levchenko, A.E., Belov, A.V. et al. Generation of Supercontinuum and Spectrum Broadening in Holey Fibers Subjected to Radiation from Continuous Femtosecond Visible and Infrared Lasers. Measurement Techniques 47, 40–46 (2004). https://doi.org/10.1023/B:METE.0000022502.71959.74

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:METE.0000022502.71959.74

Navigation