Skip to main content
Log in

Propagation of Sound in Hard-Sphere-like Vortex Gases Using Discrete Kinetic Approach

  • Published:
Meccanica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kirchhoff, G., Vorlesungen über Mathematische Physik: Mechanik, B.G. Teubner, Leipzig, 1877 p. 257.

    Google Scholar 

  2. Fröhlich, J. and Ruelle, D., ‘Statistical mechanics of vortices in an inviscid 2D fluid’, Commun. Math. Phys. 87 (1982) 1–36.

    Google Scholar 

  3. Shnirelman, A.I., ‘Lattice theory and flows of ideal incompressible fluid’, Russ. J. Math. Phys. 1 (1993) 105–114.

    Google Scholar 

  4. Novikov, E.A., ‘Dynamics and statistics of a system of vortices’, JETP 41 (1975) 937–943.

    Google Scholar 

  5. Abo-Shaeer, J.R., Raman, C. and Ketterle, W., ‘Formation and decay of vortex lattices in Bose-Einstein condensates at finite temperatures’, Phys. Rev. Lett. 88 (2002).

  6. Onsager, L., ‘Statistical hydrodynamics’, Nuovo Cimento Suppl. 6 (1949) 279–287.

    Google Scholar 

  7. Eckhardt, B., ‘Integrable four vortex motion’, Phys. Fluids 31 (1988) 2796–2801.

    Google Scholar 

  8. Thess, A., ‘Instabilities in 2D spatially periodic flows. II. Square eddy lattice’, Phys. Fluids A 4 (1992) 1396–1407.

    Google Scholar 

  9. Saffman, P.G. and Szeto, R., ‘Equilibrium shapes of a pair of equal uniform vortices’, Phys. Fluids 23 (1980) 2339–2342.

    Google Scholar 

  10. Saffman, P.G. and Tanveer, S., ‘The touching pair of equal and opposite uniform vortices’, Phys. Fluids 25 (1982) 1929–1930.

    Google Scholar 

  11. Lamb, H., Hydrodynamics, Cambridge University Press, 6th edn, 1932 p. 223.

  12. Kraichnan, R.H. and Montgomery, D., ‘2D turbulence’, Rep. Prog. Phys. 43 (1980) 547–619.

    Google Scholar 

  13. Gatignol, R., ‘Théorie cinétique des gaz à répartition discrète de vitesses’, Z. Flugwissenschaften 18 (1970) 93–99.

    Google Scholar 

  14. Chu, K.-H., ‘Approximate Solutions for Physical Problems Related to Microchannels and Rarefied Gases’, Post-Dr Report (in English), Peking University, Beijing, May 2001.

    Google Scholar 

  15. Bobylev, A.V. and Cercignani C., ‘Discrete velocity models without nonphysical invariants’, J. Statist. Phys. 97 (1999) 677–686.

    Google Scholar 

  16. Chu, A.K.-H., ‘Note on the dispersion relations of ultrasound propagation’, Meccanica 34 (1999) 59–62.

    Google Scholar 

  17. Monaco, R. and Preziosi, L. Fluid Dynamic Applications of the Discrete Boltzmann Equation, World Scientific, Singapore, 1991.

    Google Scholar 

  18. Povitsky, A., ‘Numerical study of wave propagation in a nonuniform compressible flow’, Phys. Fluids 14 (2002) 2657–2672.

    Google Scholar 

  19. Pierrehumbert, R.T., ‘A family of vortex pairs with distributed vorticity’, J. Fluid Mech. 99 (1982) 129–144.

    Google Scholar 

  20. Kopiev, V.F. and Chernyshev, S.A., ‘Vortex ring eigen-oscillations as a source of sound’, J. Fluid Mech. 341 (1997) 19–57.

    Google Scholar 

  21. Inoue, O., ‘Sound generation by the leapfrogging between two coaxial vortex rings’, Phys. Fluids 14 (2002) 3361–3364.

    Google Scholar 

  22. Bühler, O., ‘Statistical mechanics of strong and weak point vortices in a cylinder’, Phys. Fluids 14 (2002) 2139–2149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, R.KH. Propagation of Sound in Hard-Sphere-like Vortex Gases Using Discrete Kinetic Approach. Meccanica 39, 285–290 (2004). https://doi.org/10.1023/B:MECC.0000022839.93151.b1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MECC.0000022839.93151.b1

Navigation