Skip to main content

Effects of myo-Inositol Versus Fluoxetine and Imipramine Pretreatments on Serotonin 5HT2A and Muscarinic Acetylcholine Receptors in Human Neuroblastoma Cells

Abstract

myo-Inositol (mI) is a key metabolic precursor to the phospoinositide (PI) metabolic pathway as a key component of central G-protein coupled receptor signaling systems, including several subtypes of adrenergic, cholinergic, serotonergic and metabotropic glutamatergic receptors. High dose mI has also been shown to be clinically effective in the treatment of obsessive-compulsive disorder, as well as panic and depression, although its mechanism of action remains elusive. The current study aimed to investigate the possible modulatory role of mI versus fluoxetine or imipramine pretreatments on serotonin-2A receptor (5HT2A-R) and muscarinic acetylcholine receptor (mAChR) function and binding in in vitro systems. After pretreating human neuroblastoma cells with different concentrations of mI, fluoxetine, or imipramine, receptor function was measured by second messenger [3H]-IP x accumulation and [35S]-GTPγS binding to Gαq protein. Total [3H]-mI uptake into cells was measured, as well as specific receptor binding to determine receptor binding after the pretreatments. Results suggest that mI reduces 5HT2A-R function at the receptor-G protein level. While fluoxetine also reduced 5HT2A-R function, but to a lesser degree, imipramine increased 5HT2A-R function, which may explain why mI seems to be effective exclusively in selective serotonin reuptake inhibitor-sensitive disorders. In addition mI, and at high concentrations fluoxetine and imipramine, also reduces mAChR function. Furthermore the results suggest that the attenuating effect of mI on mAChRs is partially dependent on the PI metabolic pathway. The data provide novel information on understanding the mechanism of action of mI in depression and related anxiety disorders and added to the evidence suggesting a role for the cholinergic system in the pathophysiology of depression.

This is a preview of subscription content, access via your institution.

references

  1. Ackerman, D.L., and Greenland, S. (2002). Multivariate meta-analysis of controlled drug studies for obsessive-compulsive disorder. J. Clin. Psychopharmacol. 22:309-317.

    Google Scholar 

  2. Anderson, I.M. (2000). Selective serotonin reuptake inhibitors versus tricyclic antidepressants: A meta-analysis of efficacy and tolerability. J. Affect. Disord. 58:19-36.

    Google Scholar 

  3. Baldessarini, R.J. (2001). Drugs and the treatment of psychiatric disorders. In (J.G. Hardman, and L.E. Limbird, eds.), Goodman & Gilman's the Pharmacological Basis of Therapeutics, 10th edn. no., McGraw-Hill, New York, pp. 447-483.

    Google Scholar 

  4. Balla, T., Bondeva, T., and Varnai, P. (2000). How accurately can we image inositol lipids in living cells? Trends Pharmacol. Sci. 21:238-241.

    Google Scholar 

  5. Batty, I.H., and Downes, C.P. (1995). The mechanism of muscarinic receptorstimulated phophatidylinositol re-synthesis in 1321N1 astrocytoma cells and its inhibition by Li+ ions. J. Neurochem. 65:2279-2289.

    Google Scholar 

  6. Berry, G.T., Mallee, J.J., Kwon, H.M., Rim, J.S., Mulla, W.R., Muenke, M., and Spinner, N.B. (1995). The human osmoregulatory Na+/myoinositol cotransporter gene (SLC5A3): Molecular cloning and localization to chromosome 21. Genomics 25:507-513.

    Google Scholar 

  7. Blier, P. (2003). The pharmacology of putative early-onset antidepressant strategies. Eur. Neuropsychopharmacol. 13:57-66.

    Google Scholar 

  8. Boess, F.G., and Martin, I.L. (1994). Molecular biology of 5-HT receptors. Neuropharmacology 33:275-317.

    Google Scholar 

  9. Casarosa, P., Bakker, R.A., Verzijl, D., Navis, M., Timmerman, H., Leurs, R., and Smit, M. (2001). Constitutive signalling of the human cytomegalovirus-encoded chemokine receptor US28. J. Biol. Chem. 276:1133-1137.

    Google Scholar 

  10. Chau, D.T., Rada, P., Kosloff, R.A. Taylor, J.L., and Hoebel, B.G. (2001). Nucleus accumbens muscarinic receptors in the control of behavioral depression: Antidepressant-like effects of local M1 antagonist in the Porsolt swim test. Neuroscience 104:791-798.

    Google Scholar 

  11. Clements, R.S., Jr., and Diethelm, A.G. (1979). The metabolism of myoinositol by the human kidney. J. Lab. Clin. Med. 93:210-219.

    Google Scholar 

  12. Daws, L.C., and Overstreet, D.H. (1999). Ontogeny of muscarinic cholinergic supersensitivity in the Flinders Sensitive Line rat. Pharmacol. Biochem. Behav. 62:367-380.

    Google Scholar 

  13. DeLapp, N.W., McKenzie, J.H., Sawyer, B.D., Vandergriff, A., Falcone, J., McClure, D., and Felder, C.C. (1999). Determination of [35S]Guanosine-5'-O-(3-thio)triphosphate binding mediated by cholinergic muscarinic receptors in membranes from Chinese hamster ovary cells and rat striatum using an anti-G protein scintillation proximity assay. J. Pharmacol. Exp. Ther. 289:946-955.

    Google Scholar 

  14. Einat, H., and Belmaker, R.H. (2001). The effects of inositol treatment in animal models of psychiatric disorders. J. Affect. Disord. 62:113-121.

    Google Scholar 

  15. Einat, H., Clenet, F., Shaldubina, A., Belmaker, R.H., and Bourin, M. (2001). The antidepressant activity of inositol in the forced swim test involves 5HT2 receptors. Behav. Brain Res. 118:77-83.

    Google Scholar 

  16. Einat, H., Elkabaz-Shwortz, Z., Cohen, H., Kofman, O., and Belmaker, R.H. (1998). Chronic epi-inositol has an anxiolytic-like effect in the plusmaze model in rats. Int. J. Neuropsychopharmacol. 1:31-34.

    Google Scholar 

  17. Faravelli, C., Cosci, F., Ciampelli, M., Scarpato, M.A., Spiti, R., and Ricca, V. (2003). A self-controlled, naturalistic study of selective serotonin reuptake inhibitors versus tricyclic antidepressants. Psychother. Psychosom. 72:95-101.

    Google Scholar 

  18. Ferguson, S.S., Zhang, J., Barak, L.S., and Caron, M.G. (1998). Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci. 62:1561-1565.

    Google Scholar 

  19. Fisher, S.K., Novak, J.E., and Agranoff, B.W. (2002). Inositol and higher inositol phosphates in neural tissues: Homeostasis, metabolism and functional significance. J. Neurochem. 82:1-19.

    Google Scholar 

  20. Freedman, N.J., and Lefkowitz, R.J. (1996). Desensitization of G proteincoupled receptors. Recent Prog. Horm. Res. 51:319-351.

    Google Scholar 

  21. Gaidarov, I., Krupnick, J.G., Flack, J.R., Benovic, J.L., and Keen, J.H. (1999). Arrestin function in G-protein-coupled receptro endocytosis requires phosphoinositide binding. EMBO J. 18:871-881.

    Google Scholar 

  22. Gray, J.A., and Roth, B.L. (2001). Paradoxical trafficking and regulation of 5-HT2A receptors by agonists and antagonists. Brain Res. Bul. 56:441-451.

    Google Scholar 

  23. Harvey, B.H. (1997). The neurobiology and pharmacology of depression. A comparative overview of serotonin selective antidepressants. S. Afr. Med. J. 87:540-552.

    Google Scholar 

  24. Harvey, B.H., Brink, C.B., Seedat, S., and Stein, D.J. (2002). Defining the neuromolecular action of myo-inositol application to obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 26:21-32.

    Google Scholar 

  25. Harvey, B.H., Naciti, C., Brand, L., and Stein, D.J. (2003). Endocrine, cognitive and hippocampal/cortical 5HT1A/2A receptor changes evoked by a time dependent sensitisation (TDS) stress model in rats. Brain Res. 983:97-107.

    Google Scholar 

  26. Harvey, B.H., Scheepers, A.S., Brand, L., and Stein, D.J. (2001). Chronic inositol increases striatal D2 receptors but does not modify dex-amphetamine-induced motor behavior. Pharmacol. Biochem. Behav. 68:245-253.

    Google Scholar 

  27. Hauser, G., and Finelli, V.N. (1963). The biosynthesis of free and phosphatide myoinositol from glucose in mammalian tissues. J. Biol. Chem. 238:3224-3228.

    Google Scholar 

  28. Häussinger, D., Laubenberger, J., Vom Dahl, S., Ernst, T., Bayer, S., Langer, M., Gerok, W., and Henning, J. (1994). Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475-1480.

    Google Scholar 

  29. Holub, B.J. (1986). Metabolism and function of myo-inositol and inositol phospholipids. Annu. Rev. Nutr. 6:563-597.

    Google Scholar 

  30. Jackson, P.S., and Madsen, J.R. (1997). Identification of the volumesensitive organic osmolyte/anion channel in human glial cells. Pediatr. Neurosurg. 27:286-291.

    Google Scholar 

  31. Jackson, P.S., and Strange, K. (1993). Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265:C1489-C1500.

    Google Scholar 

  32. Kaplan, Z., Amir, M., Swartz, M., and Levine, J. (1996). Inositol treatment of post-traumatic stress disorder. Anxiety 2:51-52.

    Google Scholar 

  33. Kukkonen, J., Ojala, P., Näsman, J., Hämäläinen, H., Heikkilä, J., and åkerman, K.E. (1992). Muscarinic receptor subtypes in human neuroblastoma cell lines SH-SY5Y and IMR-32 as determined by receptor binding, Ca2+ mobilization and northern blotting. J. Pharmacol. Exp. Ther. 263:1487-1493.

    Google Scholar 

  34. Levine, J. (1997). Controlled trials of inositol in psychiatry. Eur. Neuropsychopharmacol 7:147-155.

    Google Scholar 

  35. Low, M.G. (2000). Glycosylphosphatidylinositol-anchored proteins and their phospholipases. In (S. Cockcroft, ed.), Biology of Phosphoinositides, Oxford University Press, Oxford, pp. 210-239.

    Google Scholar 

  36. McDonough, M., and Kennedy, M. (2002). Pharmacological management of obsessive-compulsive disorder: A review for clinicians. Harv. Rev. Psychiatry 10:127-137.

    Google Scholar 

  37. McKittrick, C.R., Blanchard, C.D., Blanchard, R.J., McEwen, B.S., and Sakei, R.R. (1995). Serotonin receptor binding in a colony model of chronic social stress. Biol. Psychiatry 37:383-393.

    Google Scholar 

  38. Meyerson, L.R., Wennogle, L.P., Abel, M.S., Coupet, J., Lippa, A.S., Rauh, C.E., and Beer, B. (1982). Human brain receptor alterations in suicide victims. Pharmacol. Biochem. Behav. 17:159-163.

    Google Scholar 

  39. Nemeroff, C.B. (2002). Recent advances in the neurobiology of depression. Psychopharmacol. Bull. 36(Suppl. 2):6-23.

    Google Scholar 

  40. Nemets, B., Talesnick, B., Belmaker, R.H., and Levine, J. (2002). Myo-inositol has no beneficial effect on premenstrual dysphoric disorder. World J. Biol. Psychiatry 3:147-149.

    Google Scholar 

  41. Oquendo, M.A., Placidi, G.P., Malone, K.M., Campbell, C., Keilp, J., Brodsky, B., Kegeles, L.S. Cooper, T.B., Parsey, R.V., van Heertum, R.L., and Mann, J.J. (2003). Positron emission tomography of regional brain metabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression. Arch. Gen. Psychiatry 60:14-22.

    Google Scholar 

  42. Payrastre, B., Missy, K., Giuriato, S., Bodin, S., Plantavid, M., and Gratacap, M. (2001). Phosphoinositides: Key players in cell signalling, in time and space. Cell. Signa. 13:377-387.

    Google Scholar 

  43. Pigott, T.A. (1996). OCD: Where the serotonin selective story begins. J. Clin. Psychiatry 57:11-20.

    Google Scholar 

  44. Rahman, S., and Neuman, R.S. (1993). Myo-inositol reduces serotonin (5-HT2) receptor induced homologous and heterologous desensitization. Brain Res. 631:349-351.

    Google Scholar 

  45. Richelson, E. (1994). The pharmacology of antidepressants at the synapse: Focus on newer compounds. J. Clin. Psychiatry 55:A34-A39.

    Google Scholar 

  46. Roth, B.L., McLean, S., Zhu, X.Z., and Chuang, D.M. (1987). Characterization of two [3H]ketanserin recognition sites in rat striatium. J. Neurochem. 49:1833-1838.

    Google Scholar 

  47. Rubin, R.T., Abbasi, S.A., Rhodes, M.E., and Czambel, R.K. (2003). Growth hormone responses to low-dose physostigmine administration: Functional sex differences (sexual diergism) between major depressives and matched controls. Psychol. Med. 33:655-665.

    Google Scholar 

  48. Rubin, R.T., O'Toole, S.M., Rhodes, M.E., Sekula, L.K., and Czambel, R.K. (1999). Hypothalamo-pituitary-adrenal cortical responses to low-dose physostigmine and arginine vasopressin administration: Sex differences between major depressives and matched control subjects. Psychiatry. Res. 89:1-20.

    Google Scholar 

  49. Seedat, S., Stein, D.J., and Harvey, B.H. (2001). Inositol in the treatment of compulsive skin picking and trichotillomania. J. Clin. Psychiatry 62, 60-61.

    Google Scholar 

  50. Shytle, R.D., Silver, A.A., Lucas, R.L., Newman, M.B., Sheehan, D.V., and Sanberg, P.R. (2002). Nicotinic acetylcholine receptors as targets for antidepressants. Mol. Psychiatry 7:525-535.

    Google Scholar 

  51. Slowiejko, D.M., McEwen, E.L., Ernst, S.A., and Fisher, S.K. (1996). Muscarinic receptor sequestration in SH-SY5Y neuroblastoma cells is inhibited when clathrin distribution is perturbed. J. Neurochem. 66:186-196.

    Google Scholar 

  52. Sorensen, S.D., Linseman, D.A., Mcewen, E.L., Heacock, A.M., and Fisher, S.K. (1998). A role for a Wortmannin-sensitive phosphatidylinositol-4-kinase in the endocytosis of muscarinic cholinergic receptors. Mol. Pharmacol. 53:827-836.

    Google Scholar 

  53. Stein, D.J., Spadaccini, E., and Hollander, E. (1995). Meta-analysis of pharmacotherapy trials for obsessive-compulsive disorder. Int. Clin. Psychopharmacol. 10:11-18.

    Google Scholar 

  54. Toker, A., and Cantley, L.C. (1997). Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673-676.

    Google Scholar 

  55. Trivedi, M.H. (2003). Treatment-resistant depression: New therapies on the horizon. Ann. Clin. Psychiatry 15:59-70.

    Google Scholar 

  56. Tummel, K.E., and Shen, D.D. (2001). Appendix II: Design and optimization of dosage regimens: Pharmacokinetic data. In (J.G. Hardman and L.E. Limbird, eds.), Goodman & Gilman's the Pharmacological Basis of Therapeutics, 10th edn., McGraw-Hill, New York, pp. 1917-2023.

    Google Scholar 

  57. Uldry, M., Ibberson, M., Horisberger, J.D., Chatton, J.Y., Riederer, B.M., and Thorens, B. (2001). Identification of a mammalian H (+)-myoinositol symporter expressed predominantly in the brain. EMBO J. 20:4467-4477.

    Google Scholar 

  58. Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C., Woscholski, R., Parker, P.J., and Waterfield, M.D. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70:535-602.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brink, C.B., Viljoen, S.L., de Kock, S.E. et al. Effects of myo-Inositol Versus Fluoxetine and Imipramine Pretreatments on Serotonin 5HT2A and Muscarinic Acetylcholine Receptors in Human Neuroblastoma Cells. Metab Brain Dis 19, 51–70 (2004). https://doi.org/10.1023/B:MEBR.0000027417.74156.5f

Download citation

  • myo-Inositol
  • fluoxetine
  • imipramine
  • antidepressants
  • muscarinic acetylcholine receptor
  • serotonin-2A receptor
  • human neuroblastoma