Skip to main content
Log in

The contractile apparatus as a target for drugs against heart failure: Interaction of levosimendan, a calcium sensitiser, with cardiac troponin c

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac failure is one of the leading causes of mortality in developed countries. As life expectancies of the populations of these countries grow, the number of patients suffering from cardiac insufficiency also increases. Effective treatments are being sought and recently a new class of drugs, the calcium sensitisers, was developed. These drugs cause a positive inotropic effect on cardio-myocytes by interacting directly with the contractile apparatus. Their mechanism of action is not accompanied by an increase in intracellular calcium concentration at therapeutic doses, as seen for the older generation of positive inotropic drugs, and thus does not induce calcium-related deleterious effects such as arrhythmias or apoptosis.

Levosimendan is a novel calcium sensitiser which has been discovered by using cardiac troponin C (cTnC) as target protein. This drug has been proved to be a well-tolerated and effective treatment for patients with severe decompensated heart failure.

This review describes the basic principles of muscle contraction, the main components of the contractile apparatus and their roles in the heart contraction. The regulatory proteins troponin C (cTnC), troponin I (cTnI), troponin T (cTnT), and tropomyosin (Tm) and their interactions are discussed in details. The concept of calcium sensitisation is thereafter explained and a few examples of calcium sensitisers and their putative mechanisms are discussed. Finally, the binding of levosimendan to cTnC and its mechanism of action are described and the results discussed under the light of the action of this drug in vitro and in vivo (Mol Cell Biochem 266: 87–107, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haselgrove JC, Huxley HE: X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle. J Mol Biol 77(4): 549–568, 1973

    Google Scholar 

  2. Starr R, Almond R, Offer G: Location of C-protein, H-protein and X-protein in rabbit skeletal muscle fibre types. J Muscle Res Cell Motil 6: 227–256, 1985

    Google Scholar 

  3. Seiler SH, Fischman DA, Leinwand LA: Modulation of myosin filament organization by C-protein family members. Mol Biol Cell 7: 113–127, 1996

    Google Scholar 

  4. Wang SM, Lo MC, Shang C, Kao SC, Tseng YZ: Role of M-line proteins in sarcomeric titin assembly during cardiac myofibrillogenesis. J Cell Biochem 71: 82–95, 1998

    Google Scholar 

  5. Holmes KC, Popp D, Gebhard W, Kabsch W: Atomic model of the actin filament. Nature 347: 44–49, 1990

    Google Scholar 

  6. Lorenz M, Poole KJ, Popp D, Rosenbaum G, Holmes KC: An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol 246(1): 108–119, 1995

    Google Scholar 

  7. Moore PB, Huxley HE, DeRosier DJ: Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 50: 279–295, 1970

    Google Scholar 

  8. Phillips GNJ, Fillers JP, Cohen C: Tropomyosin crystal structure and muscle regulation. J Mol Biol 192(1): 111–131, 1986

    Google Scholar 

  9. Potter JD: The content of troponin, tropomyosin, actin, and myosin in rabbit skeletal muscle myofibrils. Arch Biochem Biophys 162(2): 436–441, 1974

    Google Scholar 

  10. McLachlan AD, Stewart M: The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol 103(2): 271–298, 1976

    Google Scholar 

  11. Gordon AM, Homsher E, Regnier M: Regulation of contraction in striated muscle. Rev Physiol Rev 80(2): 853–924, 2000

    Google Scholar 

  12. Gordon AM, Regnier M, Homsher E: Skeletal and cardiac muscle contractile activation: Tropomyosin “rocks and rolls”. Rev News Physiol Sci 16: 49–55, 2001

    Google Scholar 

  13. Yates LD, Greaser ML: Troponin subunit stoichiometry and content in rabbit skeletal muscle and myofibrils. J Biol Chem 258(9): 5770–5774, 1983

    Google Scholar 

  14. Solaro RJ, Van Eyk J: Altered interactions among thin filament protein modulate cardiac function. J Mol Cell Cardiol 28: 217–230, 1996

    Google Scholar 

  15. Ohtsuki I, Shiraishi F: Periodic binding of troponin C×I and troponin I totropomyosin-actin filaments. J Biochem 131: 739–743, 2002

    Google Scholar 

  16. Greaser ML, Gergely J: Reconstitution of troponin activity from three protein components. J Biol Chem 246(13): 4226–4233, 1971

    Google Scholar 

  17. Ohtsuki I, Maruyama K, Ebashi S: Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. Rev Adv Protein Chem 38: 1–67, 1986

    Google Scholar 

  18. Filatov VL, Katrukha AG, Bulargina TV, Gusev NB: Troponin: structure, properties, and mechanism of functioning. Rev Biochem (Mosc). 64(9): 969–985, 1999

    Google Scholar 

  19. Mak AS, Smillie LB: Non-polymerizable tropomyosin: Preparation, some properties and F-actin binding. Biochem Biophys Res Commun 101: 208–214, 1981

    Google Scholar 

  20. Malnic B, Farah CS, Reinach FC: Regulatory properties of the NH2-and COOH-terminal domains of troponin T. ATPase activation and binding to troponin I and troponin C. J Biol Chem 273(17): 10594–10601, 1998

    Google Scholar 

  21. Maytum R, Geeves MA, Lehrer SS: A modulatory role for the troponin T tail domain in thin filament regulation. J Biol Chem 277: 29774–29780, 2002

    Google Scholar 

  22. Pearlstone JR, Smillie LB: Binding of troponin-T fragments to several types of tropomyosin. Sensitivity to Ca2+ in the presence of troponin-C. J Biol Chem 257(18): 10587–10592, 1982

    Google Scholar 

  23. Morris EP, Lehrer SS: Troponin-tropomyosin interactions. Fluorescence studies of the binding of troponin, troponin T, and chymotryptic troponin T fragments to specifically labeled tropomyosin. Biochemistry 23(10): 2214–2220, 1984

    Google Scholar 

  24. Schaertl S, Lehrer SS, Geeves MA: Separation and characterization of the two functional regions of troponin involved in muscle thin filament regulation. Biochemistry 34: 15890–15894, 1995

    Google Scholar 

  25. Tobacman LS: Thin filament-mediated regulation of cardiac contraction. Rev Annu Rev Physiol 58: 447–481, 1996

    Google Scholar 

  26. Blumenschein TM, Tripet BP, Hodges RS, Sykes BD: Mapping the interacting regions between troponins T and C. Binding of TnT and TnI peptides to TnC and NMR mapping of the TnT-binding site on TnC. J Biol Chem 276(39): 36606–36612, 2001

    Google Scholar 

  27. White SP, Cohen C, Phillips GNJ: Structure of co-crystals of tropomyosin and troponin. Nature 325: 826–828, 1987

    Google Scholar 

  28. Farah CS, Miyamoto CA, Ramos CH, Da S-AC, Quaggio RB, Fujimori K, Smillie LB, Reinach FC: Structural and regulatory functions of the NH2-and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 269: 5230–5240, 1994

    Google Scholar 

  29. Potter JD, Sheng Z, Pan BS, Zhao J: A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction. J Biol Chem 270(6): 2557–2562, 1995

    Google Scholar 

  30. Tobacman LS, Nihli M, Butters C, Heller M, Hatch V, Craig R, Lehman W, Homsher E: The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity. J Biol Chem 277(31): 27636–27642, 2002

    Google Scholar 

  31. McKay RT, Saltibus LF, Li MX, Sykes BD: Energetics of the induced structural change in a Ca2+ regulatory protein: Ca2+ and troponin I peptide binding to the E41A mutant of the N-domain of skeletal troponin C. Biochemistry 39(41): 12731–12738, 2000

    Google Scholar 

  32. Leavis PC, Gergely J: Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. Revew. CRC Crit Rev Biochem 16(3): 235–305, 1984

    Google Scholar 

  33. Zot AS, Potter JD: Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Review. Annu Rev Biophys Biophys Chem 16: 535–559, 1987

    Google Scholar 

  34. da Silva AC, Reinach FC: calcium-binding induces conformational changes in muscle regulatory proteins. Rev Trends Biochem Sci 16(2): 53–57, 1991

    Google Scholar 

  35. Grabarek Z, Tao T, Gergely J: Molecular mechanism of troponin-C function. Review. J Muscle Res Cell Motil 13(4): 383–393, 1992

    Google Scholar 

  36. Gergely J, Grabarek Z, Tao T: The molecular switch in troponin C. Rev. Adv Exp Med Biol. 332: 117–123, 1993

    Google Scholar 

  37. Farah CS, Reinach FC: The troponin complex and regulation of muscle contraction. Review. FASEB J 9: 755–767, 1995

    Google Scholar 

  38. Lehrer SS, Geeves MA: The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol 277(5): 1081–1089, 1998

    Google Scholar 

  39. Squire JM, Morris EP: A new look at thin filament regulation in vertebrate skeletal muscle. Review. FASEB J 12(10): 761–771, 1998

    Google Scholar 

  40. McKillop DF, Geeves MA: Regulation of the interaction between actin and myosin subfragment 1: Evidence for three states of the thin filament. Biophys J 65(2): 693–701, 1993

    Google Scholar 

  41. Head JG, Ritchie MD, Geeves MA: Characterization of the equilibrium between blocked and closed states of muscle thin filaments. Eur J Biochem 227(3): 694–699, 1995

    Google Scholar 

  42. Vibert P, Craig R, Lehman W: Steric-model for activation of muscle thin filaments. J Mol Biol 266(1): 8–14, 1997

    Google Scholar 

  43. Maytum R, Lehrer SS, Geeves MA: Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 38(3): 1102–1110, 1999

    Google Scholar 

  44. Xu C, Craig R, Tobacman L, Horowitz R, Lehman W: Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J 77(2): 985–992, 1999

    Google Scholar 

  45. Ebashi S, Endo M: Calcium ion and muscle contraction. Review. Prog Biophys Mol Biol 18: 123–183, 1968

    Google Scholar 

  46. Solaro RJ, Rarick HM: Troponin and tropomyosin: Proteins that switch on and tune in the activity of cardiac myofilaments. Rev Circ Res 83(5): 471–480, 1998

    Google Scholar 

  47. Schaub MC, Perry SV: The relaxing protein system of striated muscle. Resolution of the troponin complex into inhibitory and calcium ion-sensitizing factors and their relationship to tropomyosin. Biochem J 115(5): 993–1004, 1969

    Google Scholar 

  48. Potter JD, Gergely J: Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13: 2697–2703, 1974

    Google Scholar 

  49. Hitchcock SE: Regulation of muscle contraction: Bindings of troponin and its components to actin and tropomyosin. Eur J Biochem 52(2): 255–263, 1975

    Google Scholar 

  50. Weeks RA, Perry SV: Characterization of a region of the primary sequence of troponin C involved in calcium ion-dependent interaction with troponin I. Biochem J 173(2): 449–457, 1978

    Google Scholar 

  51. Lehman W, Rosol M, Tobacman LS, Craig R: Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. J Mol Biol 307: 739–744, 2001

    Google Scholar 

  52. Rosol M, Lehman W, Craig R, Landis C, Butters C, Tobacman LS: Three-dimensional reconstruction of thin filaments containing mutant tropomyosin. Biophys J 78(2): 908–917, 2000

    Google Scholar 

  53. Tobacman LS, Butters CA: A new model of cooperative myosin-thin filament binding. J Biol Chem 275(36): 27587–27593, 2000

    Google Scholar 

  54. Roher A, Lieska N, Spitz W: The amino acid sequence of human cardiac troponin C. Muscle Nerve 9: 73–77, 1986

    Google Scholar 

  55. Romero-Herrera AE, Castillo O, Lehmann H: Human skeletal muscle proteins. The primary structure of troponin C. J Mol Evol 8: 251–270, 1976

    Google Scholar 

  56. van Eerd JP, Takahashi K: The amino acid sequence of bovine cardiac troponin-C. Comparison with rabbit skeletal troponin-C. Biochem Biophys Res Commun 64(1): 122–127, 1975

    Google Scholar 

  57. Herzberg O, James MN: Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution. Nature 313(6004): 653–659, 1985

    Google Scholar 

  58. Sundaralingam M, Bergstrom R, Strasburg G, Rao ST, Roychowdhury P, Greaser M, Wang BC: Molecular structure of troponin C from chicken skeletal muscle at 3-ångstrom resolution. Science 227(4689): 945–948, 1985

    Google Scholar 

  59. Herzberg O, James MNG: Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution. J Mol Biol 203: 761–779, 1988

    Google Scholar 

  60. Satyshur KA, Rao ST, Pyzalska D, Drendel W, Greaser M, Sundaralingam M: Refined structure of chicken skeletal muscle troponin C inthe two-calcium state at 2-Å resolution. J Biol Chem 263(4): 1628–1247, 1988

    Google Scholar 

  61. Slupsky CM, Sykes BD: NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 34: 15953–15964, 1995

    Google Scholar 

  62. Houdusse A, Love ML, Dominiguez R, Grabarek Z, Cohen C: Structures of four Ca2+-bound troponin C at 2.0 Å resolution: Further insights into the Ca2+-switch in the calmodulin superfamily. Structure 5(12): 1695–1711, 1997

    Google Scholar 

  63. Soman J, Tao T, Phillips GNJ: Conformational variation of calcium-bound troponin C. Proteins: Struct Genet 37: 510–511, 1999

    Google Scholar 

  64. Sia SK, Li MX, Spyracopoulos L, Gagn, SM, Liu W, Putkey JA, Sykes BD: Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem 272(29): 18216–18221, 1997

    Google Scholar 

  65. Kleerekoper Q, Howarth JW, Guo X, Solaro RJ, Rosevear PR: Cardiac troponin I induced conformational changes in cardiac troponin C as monitored by NMR using site-directed spin and isotope labeling. Biochemistry 34(41): 13343–13352, 1995

    Google Scholar 

  66. Wang CL, Zhan Q, Tao T, Gergely J: pH-dependent structural transition in rabbit skeletal troponin C. J Biol Chem 262(20): 9636–9640, 1987

    Google Scholar 

  67. Wang CL, Leavis PC: Distance measurements in cardiac troponin C. Arch Biochem Biophys 276: 236–241, 1990

    Google Scholar 

  68. Heidorn DB, Trewhella J: Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27(3): 909–915, 1988

    Google Scholar 

  69. Sheng ZL, Francois JM, Hitchcock-DeGregori SE, Potter JD: Effects of mutations in the central helix of troponin C on its biological activity. J Biol Chem 266(9): 5711–5715, 1991

    Google Scholar 

  70. Babu A, Rao VG, Su H, Gulati J: Critical minimum length of the central helix in troponin C for the Ca2+ switch in muscular contraction. J Biol Chem 268(26): 19232–19238, 1993

    Google Scholar 

  71. Ramakrishnan S, Hitchcock-DeGregori SE: Investigation of the structural requirements of the troponin C central helix for function. Biochemistry 34(51): 16789–16796, 1995

    Google Scholar 

  72. Dvoretsky A, Abusamhadneh E, Howarth J, Rosevear PR: Solution structure of calcium-saturated cardiac troponin C bound to cardiac troponin I. J Biol Chem 277(41): 38565–38570, 2002

    Google Scholar 

  73. Kretsinger RH, Nockolds CE: Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chemj 248(9): 3313–3326, 1973

    Google Scholar 

  74. Potter JD, Gergely J: The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem 250(12): 4628–4633, 1975

    Google Scholar 

  75. Babu A, Scordilis SP, Sonnenblick EH, Gulati J: The control of myocardial contraction with skeletal fast muscle troponin C. J Biol Chem 262(12): 5815–5822, 1987

    Google Scholar 

  76. Babu A, Lehman W, Gulati J: Characterization of the Ca2+-switch in skeletal and cardiac muscles. FEBS Lett 251(1, 2): 177–182, 1989

    Google Scholar 

  77. Zot HG, Potter JD: A Structural role for the Ca2+-Mg2+ sites on troponin C in the regulation of muscle contraction. J Biol Chem 257: 7678–7683, 1982

    Google Scholar 

  78. Sheng Z, Strauss WL, Francois JM, Potter JD: Evidence that both Ca2+-specific sites of skeletal muscle TnC are required for full activity. J Biol Chem 265: 21554–21560, 1990

    Google Scholar 

  79. Putkey JA, Liu W, Sweeney HL: Function of the N-terminal calcium-binding sites in cardiac/slow troponin C assessed in fast skeletal muscle fibers. J Biol Chem 266: 14881–14884, 1991

    Google Scholar 

  80. Li MX, Gagnè SM, Tsuda S, Kay CM, Smillie LB, Sykes BD: Calcium-binding to the regulatory N-domain of skeletal muscle troponin C occurs in a stepwise manner. Biochemistry 34(26): 8330–8340, 1995

    Google Scholar 

  81. Li MX, Gagnè SM, Spyracopoulos L, Kloks CP, Audette G, Chandra M, Solaro RJ, Smillie LB, Sykes BD: NMR studies of Ca2+ binding to the regulatory domains of cardiac and E41A skeletal muscle troponin C reveal the importance of site I to energetics of the induced structural changes. Biochemistry 36(41): 12519–12525, 1997

    Google Scholar 

  82. Spyracopoulos L, Gagnè SM, Li MX, Sykes BD: Dynamics and thermodynamics of the regulatory domain of human cardiac troponin C inthe apo-and calcium-saturated states. Biochemistry 37(51): 18032–18044, 1998

    Google Scholar 

  83. Strynadka NCJ, Chernia M, Sielecki AR, Li MX, Smillie LB, James MNG: Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 Å resolution. J Mol Biol 273: 238–255, 1997

    Google Scholar 

  84. Leavis PC, Rosenfeld SS, Gergely J, Grabarek Z, Drabikowski W: Proteolytic fragments of troponin C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T. J Biol Chem 253(15): 5452–5459, 1978

    Google Scholar 

  85. Holroyde MJ, Robertson SP, Johnson JD, Solaro RJ, Potter JD: The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosinetriphosphatase. J Biol Chem 255(24): 11688–11693, 1980

    Google Scholar 

  86. Finley N, Dvoretsky A, Rosevear PR: Magnesium-calcium exchange in cardiac troponin C bound to cardiac troponin I. J Mol Cell Cardiol 32: 1439–1446, 2000

    Google Scholar 

  87. Krudy GA, Brito RM, Putkey JA, Rosevear PR: Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium-binding. Biochemistry 31(6): 1595–1602, 1992

    Google Scholar 

  88. Lin X, Krudy GA, Howarth JW, Brito RM, Rosevear PR, Putkey JA: Assignment and calcium dependence of methionyl epsilon C and epsilon H resonances in cardiac troponin C. Biochemistry 33(48): 14434–14442, 1994

    Google Scholar 

  89. Negele JC, Dotson DG, Liu W, Sweeney HL, Putkey JA: Mutation of the high affinity calcium-binding sites in cardiac troponin C. J Biol Chem 267(2): 825–831, 1992

    Google Scholar 

  90. Brito RM, Krudy GA, Negele JC, Putkey JA, Rosevear PR: Calcium plays distinctive structural roles in the N-and C-terminal domains of cardiac troponin C. J Biol Chem 268(28): 20966–20973, 1993

    Google Scholar 

  91. Szczesna D, Guzman G, Miller T, Zhao J, Farokhi K, Ellemberger H, Potter JD: The role of the four Ca2+ binding sites of troponin C in the regulation of skeletal muscle contraction. J Biol Chem 271(14): 8381–8386, 1996

    Google Scholar 

  92. Grabarek Z, Tan RY, Wang J, Tao T, Gergely J: Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature 345(6271): 132–135, 1990

    Google Scholar 

  93. Perry SV: Troponin I: inhibitor or facilitator. Rev Mol Cell Biochem 190: 9–32, 1999

    Google Scholar 

  94. Spyracopoulos L, Li MX, Sia SK, Gagnè SM, Chandra M, Solaro RJ, Sykes BD: Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 36(40): 12138–12146, 1997

    Google Scholar 

  95. Herzberg O, Moult J, James MN: A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 261(6): 2638–2644, 1986

    Google Scholar 

  96. Herzberg O, Moult J, James MN: Molecular structure of troponin C and its implications for the Ca2+ triggering of muscle contraction. Methods Enzymol 139: 610–632, 1987

    Google Scholar 

  97. Gagnè SM, Tsuda S, Li MX, Smillie LB, Sykes BD: Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat Struct Biol 2(9): 784–789, 1995

    Google Scholar 

  98. Gagnè SM, Li MX, Sykes BD: Mechanism of direct coupling between binding and induced structural changes in regulatory calcium-binding proteins. Biochemistry 36(15): 4386–4392, 1997

    Google Scholar 

  99. McKay RT, Pearlstone JR, Corson DC, Gagnè SM, Smillie LB, Sykes BD: Structure and interaction site of the regulatory domain of troponin-C when complexed with the 96–148 region of troponin-I. Biochemistry 37(36): 12419–12430, 1998

    Google Scholar 

  100. McKay RT, Tripet BP, Pearlstone JR, Smillie LB, Sykes BD: Defining the region of troponin-I that binds to troponin-C. Biochemistry 38(17): 5478–5489, 1999

    Google Scholar 

  101. Brito RM, Putkey JA, Strynadka NC, James MN, Rosevear PR: Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II. Biochemistry 30(42): 10236–10245, 1991

    Google Scholar 

  102. Johnson JD, Collins JH, Robertson SP, Potter JD: A fluorescent probe study of Ca2+ binding to the Ca2+-specific sites of cardiac troponin and troponin C. J Biol Chem 255(20): 9635–9640, 1980

    Google Scholar 

  103. Putkey JA, Sweeney HL, Campbell AP: Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. J Biol Chem 264: 12370–12378, 1989

    Google Scholar 

  104. Pääkkönen K, Annila A, Sorsa T, Pollesello P, Tilgmann C, Kilpeläinen I, Karisola P, Ulmanen I, Drakenberg T: Solution structure and main chain dynamics of the regulatory domain (residues 1–91) of human cardiac troponin C. J Biol Chem 273(25): 15633–15638, 1998

    Google Scholar 

  105. Evenäs J, Malmendal A, Thulin E, Carlström G, Forsen S: Ca2+ binding and conformational changes in a calmodulin domain. Biochemistry 37: 13744–13754, 1998

    Google Scholar 

  106. Abusamhadneh E, Abbott MB, Dvoretsky A, Finley N, Sasi S, Rose-vear PR: Interaction of bepridil with the cardiac troponin C/troponin I complex. FEBS Lett 506: 51–54, 2001

    Google Scholar 

  107. Gulati J, Babu A, Su H: Functional delineation of the Ca2+-deficient EF-hand in cardiac muscle, with genetically engineered cardiac-skeletal chimeric troponin C. J Biol Chem 267: 25073–25077, 1992

    Google Scholar 

  108. Smith L, Greenfield NJ, Hitchcock-DeGregori SE: The effects of deletion of the amino-terminal helix on troponin C function and stability. J Biol Chem 269(13): 9857–9863, 1994

    Google Scholar 

  109. Fredricksen RS, Swenson CA: Relationship between stability and function for isolated domains of troponin C. Biochemistry 35(44):14012–14026, 1996

    Google Scholar 

  110. Chandra M, da Silva EF, Sorenson MM, Ferro JA, Pearlstone J R, Nash BE, Borgford T, Kay CM, Smillie LB: The effects of N helix deletion and mutant F29W on the Ca2+ binding and functional properties of chicken skeletal muscle troponin. J Biol Chem 269(21): 14988–14994, 1994

    Google Scholar 

  111. Smith L, Greenfield NJ, Hitchcock-DeGregori SE: Mutations in the N-and D-helices of the N-domain of troponin C affect the C-domain and regulatory function. Biophys J 76: 400–408, 1999

    Google Scholar 

  112. Fabiato A, Fabiato F: Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol 276: 233–255, 1978

    Google Scholar 

  113. Blanchard EM, Solaro RJ: Inhibition of the activation and troponin calcium-binding of dog cardiac myofibrils by acidic pH. Circ Res 55(3): 382–391, 1984

    Google Scholar 

  114. Blanchard EM, Pan BS, Solaro RJ: The effect of acidic pH on the ATPase activity and troponin Ca2+ binding of rabbit skeletal myofilaments. J Biol Chem 259(5): 3181–3186, 1984

    Google Scholar 

  115. Parsons B, Szczesna D, Zhao J, Van Slooten G, Kerrick WG, Putkey JA, Potter JD: The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. J Muscle Res Cell Motil 18(5): 599–609, 1997

    Google Scholar 

  116. el-Saleh SC, Solaro RJ: Troponin I enhances acidic pH-induced depression of Ca2+ binding to the regulatory sites in skeletal troponin C. J Biol Chem 263(7): 3274–3278, 1988

    Google Scholar 

  117. Dhoot GK, Gell PG, Perry SV: The localization of the different forms of troponin I in skeletal and cardiac muscle cells. Exp Cell Res 117(2): 357–370, 1978

    Google Scholar 

  118. Van Eyk JE, Thomas LT, Tripet B, Wiesner RJ, Pearlstone JR, Farah CS, Reinach FC, Hodges RS: Distinct regions of troponin I regulate Ca2+-dependent activation and Ca2+ sensitivity of the acto-S1-TM ATPase activity of the thin filament. J Biol Chem 272: 10529–10537, 1997

    Google Scholar 

  119. Stone DB, Timmins PA, Schneider DK, Krylova I, Ramos CH, Reinach FC, Mendelson RA: The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: A neutron scattering study. J Mol Biol 281(4): 689–704, 1998

    Google Scholar 

  120. Dong WJ, Xing J, Chandra M, Solaro RJ, Cheung HC: Structural mapping of single cystein mutants of cardiac troponin I. Proteins 41(4): 438–447, 2000

    Google Scholar 

  121. Olah GA, Rokop SE, Wang CL, Blechner SL, Trewhella J: Troponin I encompasses an extended troponin C in the Ca2+-bound complex: A small-angle X-ray and neutron scattering study. Biochemistry 33(27): 8233–8239, 1994

    Google Scholar 

  122. Olah GA, Trewhella J: Amodel structure of the muscle protein complex 4Ca2+ troponin C. Troponin I derived from small-angle scattering data: Implications for regulation. Biochemistry 33(43): 12800–12806, 1994

    Google Scholar 

  123. Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maeda Y: Crystal structure of troponin C in complex with troponin I fragment at 2.3 — A resolution. Proc Natl Acad Sci U S A 95(9): 4847–4852, 1998

    Google Scholar 

  124. Tung C-S, Wall ME, Gallagher SC, Trewhella J: A model of troponin-I in complex with troponin-C using hybrid experimental data: The inhibitory region is a beta-hairpin. Protein Sci 9: 1312–1326, 2000

    Google Scholar 

  125. Zhao X, Kobayashi T, Gryczynski Z, Gryczynski I, Lakowicz J, Wade R, Collins JH: Calcium-induced flexibility changes in the troponin C-troponin I complex. Biochim Biophys Acta 1479 (1, 2): 247–254, 2000

    Google Scholar 

  126. Dong WJ, Robinson JM, Xing J, Umeda PK, Cheung HC: An inter-domain distance in cardiac troponin C determined by fluorescence spectroscopy. Protein Sci 9(2): 280–289, 2000

    Google Scholar 

  127. Abbott MB, Gaponenko V, Abusamhadneh E, Finley N, Li G, Dvoretsky A, Rance M, Solaro RJ, Rosevear PR: Regulatory domain conformational exchange and linker region flexibility in cardiac troponin C bound to cardiac troponin I. J Biol Chem 275(27): 20610–20617, 2000

    Google Scholar 

  128. Heller WT, Abusamhadneh E, Finley N, Rosevear PR, Trewhella J: The solution structure of a cardiac troponin C-troponin I-troponin T complex shows a somewhat compact troponin C interacting with an extended troponin I-troponin T component. Biochemistry 41(52): 15654–15663, 2002

    Google Scholar 

  129. Takeda S, Yamashita A, K. M, Maeda Y: Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424(6944): 35–41, 2003

    Google Scholar 

  130. Sheng Z, Pan BS, Miller TE, Potter JD: Isolation, expression, and mutation of a rabbit skeletal muscle cDNA clone for troponin I. The role of the NH2 terminus of fast skeletal muscle troponin I in its biological activity. J Biol Chem 267(35): 25407–25413, 1992

    Google Scholar 

  131. Krudy GA, Kleerekoper Q, Guo X, Howarth JW, Solaro RJ, Rosevear PR: NMR studies delineating spatial relationship within the cardiac troponin I-troponin C complex. J Biol Chem 269: 23731–23735, 1994

    Google Scholar 

  132. Pearlstone JR, Sykes BD, Smillie LB: Interactions of structural C and regulatory N domains of troponin C with repeated sequence motifs in troponin I. Biochemistry 36(24): 7601–7606, 1997

    Google Scholar 

  133. Gasmi-Seabrook GM, Howarth JW, Finley N, Abusamhadneh E, Gaponenko V, Brito RM, Solaro RJ, Rosevear PR: Solution structures of the C-terminal domain of cardiac troponin C free and bound to the N-terminal domain of cardiac troponin I. Biochemistry 38(26): 8313–8322, 1999

    Google Scholar 

  134. Calvert MJ, Ward DG, Trayer HR, Trayer IP: The importance of the carboxyl-terminal domain of cardiac troponin C in a Ca2+-sensitive muscle regulation. J Biol Chem 275: 32508–32515, 2000

    Google Scholar 

  135. Ferrieres G, Pugniere M, Mani JC, Villard S, Laprade M, Doutre P, Pau B, Granier C: Systematic mapping of regions of human cardiac troponin I involved in binding to cardiac troponin C: N-and C-terminal low affinity contributing regions. FEBS Lett 479(3): 99–105, 2000

    Google Scholar 

  136. Mercier P, Spyracopoulos L, Sykes BD: Structure, dynamics, and thermodynamics of the structural domain of troponin C in complex with the regulatory peptide 1–40 of troponin I. Biochemistry 40(34): 10063–10077, 2001

    Google Scholar 

  137. Ngai SM, Pearlstone JR, Smillie LB, Hodges RS: Characterization of the biologically important interaction between troponin C and the N-terminal region of troponin I. J Cell Biochem 83(1): 99–110, 2001

    Google Scholar 

  138. Rarick HM, Tang HP, Guo XD, Martin AF, Solaro RJ: Interactions at the NH2-terminal interface of cardiac troponin I modulate myofilament activation. J Mol Cell Cardiol 31(2): 363–375, 1999

    Google Scholar 

  139. Tripet B, Van Eyk JE, Hodges RS: Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J Mol Biol 271(5): 728–750, 1997

    Google Scholar 

  140. McKay RT, Tripet BP, Hodges RS, Sykes BD: Interaction of the second binding region of troponin I with the regulatory domain of skeletal muscle troponin C as determined by NMR spectroscopy. J Biol Chem 272(45): 28494–28500, 1997

    Google Scholar 

  141. Dong WJ, Xing J, Villain M, Hellinger M, Robinson JM, Chandra M, Solaro RJ, Umeda PK, Cheung HC: Conformation of the regulatory domain of cardiac muscle troponin C in its complex with cardiac troponin I. J Biol Chem 274(44): 31382–31390, 1999

    Google Scholar 

  142. Li MX, Spyracopoulos L, Sykes BD: Binding of cardiac troponin-I( 147–163) induces a structural opening in human cardiac troponin-C. Biochemistry 38: 8289–8298, 1999

    Google Scholar 

  143. Dong WJ, Xing J, Robinson JM, Cheung HC: Ca2+ induces an extended conformation of the inhibitory region of troponin I in cardiac muscle troponin. J Mol Biol 314(1): 51–61, 2001

    Google Scholar 

  144. Pearlstone JR, Chandra M, Sorenson MM, Smillie LB: Biological function and site II Ca2+-induced opening of the regulatory domain of skeletal troponin C are impaired by invariant site I or II Glu mutations. J Biol Chem 275(45): 35106–35115, 2000

    Google Scholar 

  145. Kobayashi T, Kobayashi M, Gryczynski Z, Lakowicz JR, Collins JH: Inhibitory region of troponin I: Ca2+-dependent structural and environmental changes in the troponin-tropomyosin complex and in reconstituted thin filaments. Biochemistry 39(1): 86–91, 2000

    Google Scholar 

  146. Syska H, Wilkinson JM, Grand RJ, Perry SV: The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J 153(2): 375–387, 1976

    Google Scholar 

  147. Van Eyk JE, Strauss JD, Hodges RS, Ruegg JC: A synthetic peptide mimics troponin I function in the calcium-dependent regulation of muscle contraction. FEBS Lett 323(3): 223–228, 1993

    Google Scholar 

  148. Leszyk J, Grabarek Z, Gergely J, Collins JH: Characterization of zero-length cross-links between rabbit skeletal muscle troponin C and troponin I: Evidence for direct interaction between the inhibitory region of troponin I and the NH2-terminal, regulatory domain of troponin C. Biochemistry 29(1): 299–304, 1990

    Google Scholar 

  149. Slupsky CM, Shaw GS, Campbell AP, Sykes BD: A 1H NMR study of a ternary peptide complex that mimics the interaction between troponin C and troponin I. Protein Sci 1(12): 1595–1603, 1992

    Google Scholar 

  150. Howarth JW, Krudy GA, Lin X, Putkey JA, Rosevear PR: An NMR and spin label study of the effects of binding calcium and troponin I inhibitory peptide to cardiac troponin C. Protein Sci 4(4): 671–680, 1995

    Google Scholar 

  151. Mercier P, Li MX, Sykes BD: Role of the structural domain of troponin C in muscle regulation: NMR studies of Ca2+ binding and subsequent interactions with regions 1–40 and 96–115 of troponin I. Biochemistry 39(11): 2902–2911, 2000

    Google Scholar 

  152. Abbott MB, Dvoretsky A, Gaponenko V, Rosevear PR: Cardiac troponin I inhibitory peptide: Location of interaction sites on troponin C. FEBS Lett 469(2, 3): 168–172, 2000

    Google Scholar 

  153. Luo Y, Wu JL, Li B, Langsetmo K, Gergely J, Tao T: Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins. J Mol Biol 296(3): 899–910, 2000

    Google Scholar 

  154. Tripet B, De Crescenzo G, Grothe S, O'Connor-McCourt M, Hodges RS: Kinetic analysis of the interactions between troponin C and the C-terminal troponin I regulatory region and validation of a new peptide delivery/capture system used for surface plasmon resonance. J Mol Biol 323(2): 345–362, 2002

    Google Scholar 

  155. Brown LJ, Sale KL, Hills R, Rouviere C, Song L, Zhang X, Fajer PG: Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance. Proc Natl Acad Sci USA 99(20): 12765–12770, 2002

    Google Scholar 

  156. Dong WJ, Robinson JM, Stagg S, Xing J, Cheung HC: Ca2+-induced conformational transition in the inhibitory and regulatory regions of cardiac troponin I. J Biol Chem 278(10): 8686–8692, 2003

    Google Scholar 

  157. Lindhout DA, Sykes BD: Structure and dynamics of the C-domain of human cardiac troponin C in complex with the inhibitory region of human cardiac troponin I. J Biol Chem 278: 27024–27034, 2003

    Google Scholar 

  158. Li MX, Saude EJ, Wang X, Pearlstone JR, Smillie LB, Sykes BD: Kinetic studies of calcium and cardiac troponin I peptide binding to human cardiac troponin C using NMR spectroscopy. Eur Biophys J 31: 245–256, 2002

    Google Scholar 

  159. Abbott MB, Dong WJ, Dvoretsky A, DaGue B, Caprioli RM, Cheung HC, Rosevear PR: Modulation of cardiac troponin C-cardiac troponin I regulatory interactions by the amino-terminus of cardiac troponin I. Biochemistry 40(20): 5992–6001, 2001

    Google Scholar 

  160. Finley N, Abbott MB, Abusamhadneh E, Gaponenko V, Dong W, Gasmi-Seabrook G, Howarth JW, Rance M, Solaro RJ, Cheung HC, Rosevear PR: NMR analysis of cardiac troponin C-troponin I complexes: Effects of phosphorylation. FEBS Lett 453: 107–112, 1999

    Google Scholar 

  161. Gaponenko V, Abusamhadneh E, Abbott MB, Finley N, Gasmi-Seabrook G, Solaro RJ, Rance M, Rosevear PR: Effects of troponin I phosphorylation on conformational exchange in the regulatory domain of cardiac troponin C. J Biol Chem 274: 16681–16684, 1999

    Google Scholar 

  162. Ward DG, Cornes MP, Trayer IP: Structural consequences of cardiac troponin I phosphorylation. J Biol Chem 277(44): 41795–41801, 2002

    Google Scholar 

  163. Robertson SP, Johnson JD, Holroyde MJ, Kranias EG, Potter JD, Solaro RJ: The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J Biol Chem 257(1): 260–263, 1982

    Google Scholar 

  164. Zhang R, Zhao J, Potter JD: Phosphorylation of both serine residues in cardiac troponin I is required to decrease the Ca2+ affinity of cardiac troponin C. J Biol Chem 270(51): 30773–30780, 1995

    Google Scholar 

  165. Pääkkönen K, Sorsa T, Drakenberg T, Pollesello P, Tilgmann C, Permi P, Heikkinen S, Kilpeläinen I, Annila A: Conformations of the regulatory domain of cardiac troponin C examined by residual dipolar couplings. Eur J Biochem 267: 6665–6672, 2000

    Google Scholar 

  166. Hansen MR, Mueller L, Pardi A: Tunable alignment of macro-molecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5(12): 1065–1074, 1998

    Google Scholar 

  167. Tjandra N, Bax A: Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340): 1111–1114, 1997

    Google Scholar 

  168. Bax A, Tjandra N: High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. J Biomol NMR 10(3): 289–292, 1997

    Google Scholar 

  169. Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A: Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4: 732–738, 1997

    Google Scholar 

  170. Moir AJ, Solaro RJ, Perry SV: The site of phosphorylation of troponin I inthe perfused rabbit heart. The effect of adrenaline. Biochem J 185(2): 505–513, 1980

    Google Scholar 

  171. Dong WJ, Chandra M, Xing J, She M, Solaro RJ, Cheung HC: Phosphorylation-induced distance change in a cardiac muscle troponin I mutant. Biochemistry 36(22): 6754–6761, 1997

    Google Scholar 

  172. Chandra M, Dong WJ, Pan BS, Cheung HC, Solaro RJ: Effects of protein kinase A phosphorylation on signaling between cardiac troponin I and the N-terminal domain of cardiac troponin C. Biochemistry 36(43): 13305–13311, 1997

    Google Scholar 

  173. Jaquet K, Lohmann K, Czisch M, Holak T, Gulati J, Jaquet R: A model for the function of the bisphosphorylated heart-specific troponin-I N-terminus. J Muscle Res Cell Motil 19(6): 647–659, 1998

    Google Scholar 

  174. Schmidtmann A, Lohmann K, Jaquet K: The interaction of the bisphosphorylated N-terminal arm of cardiac troponin I-A 31P-NMR study. FEBS Lett 513(2,3): 289–293, 2002

    Google Scholar 

  175. Noland TAJ, Guo X, Raynor RL, Jideama NM, Averyhart-Fullard V, Solaro RJ, Kuo JF: Cardiac troponin I mutants. Phosphorylation by protein kinases C and A and regulation of Ca2+-stimulated MgATPase of reconstituted actomyosin S-1. J Biol Chem 270(43): 25445–25454, 1995

    Google Scholar 

  176. Burkart EM, Sumandea MP, Kobayashi T, Nili M, Martin AF, Homsher E, Solaro RJ: Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. J Biol Chem 278(13): 11265–11272, 2003

    Google Scholar 

  177. Lindhout DA, Li MX, Schieve D, Sykes BD: Effects of T142 phosphorylation and mutation R145G on the interaction of the inhibitory region of human cardiac troponin I with the C-domain of human cardiac troponin C. Biochemistry 41: 7267–7274, 2002

    Google Scholar 

  178. De Mello WC: Intercellular communication in cardiac muscle. Rev Circ Res 51: 1–9, 1982

    Google Scholar 

  179. Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E: Excitation-contraction coupling in postischemic myocardium. Does failure of activator Ca2+ transients underlie stunning? Circ Res 66(5): 1268–1276, 1990

    Google Scholar 

  180. Herzig JW, Feile K, Ihrig H, Rüegg JC: Inotropic intervention may alter the Ca2+ sensitivity of the contractile structures of heart muscle. Pflügers Arch Eur J Physiol 384 (Suppl): R1, 1980

    Google Scholar 

  181. Solaro RJ, Rüegg JC: Stimulation of Ca2+ binding and ATPase activity of dog cardiac myofibrils by AR-L 115BS, a novel cardiotonic agent. Circ Res 51: 290–294, 1982

    Google Scholar 

  182. Lee JA, Allen DG: Calcium sensitisers: Mechanisms of action and potential usefulness as inotropes. Cardiovasc Res 36: 10–20, 1997

    Google Scholar 

  183. Endoh M: Mechanism of action of Ca2+ sensitizers. Rev Cardiovasc Drugs Ther 15(5): 397–403, 2001

    Google Scholar 

  184. Endoh M: The therapeutic potential of novel cardiotonic agents. Rev Expert Opin Investig Drugs 12(5): 735–750, 2003

    Google Scholar 

  185. Arteaga GM, Kobayashi T, Solaro RJ: Molecular actions of drugs that sensitize cardiac myofilaments to Ca2+. Rev Ann Med 34(4): 248–258, 2002

    Google Scholar 

  186. Haikala H, Linden I-B: Mechanisms of action of calcium-sensitizing drugs. Review. J Cardiovasc Pharmacol 26(Suppl 1): S10–S19, 1995.

    Google Scholar 

  187. Ovaska M, Taskinen J: A model for human cardiac troponin C and for modulation of its Ca2+ affinity by drugs. Proteins 11(2): 79–94, 1991

    Google Scholar 

  188. Kleerekoper Q, Liu W, Choi D, Putkey JA: Identification of binding sites for bepridil and trifluoperazine on cardiac troponin C. J Biol Chem 273(14): 8153–8160, 1998

    Google Scholar 

  189. Teramura S, Yamakado T: Calcium sensitizers in chronic heart failure: Inotropic interventions-reservation to preservation. Rev Cardiologia 43(4): 375–385, 1998

    Google Scholar 

  190. Lin X, Dotson DG, Putkey JA: Covalent binding of peptides to the N-terminal hydrophobic region of cardiac troponin C has limited effects on function. J Biol Chem 271(1): 244–249, 1996

    Google Scholar 

  191. Kobayashi S, Reien Y, Ogura T, Saito T, Masuda Y, Nakaya H: Inhibitory effect of bepridil on hKv1.5 channel current: Comparison with amiodarone and E-4031. Eur J Pharmacol 430: 149–157, 2001

    Google Scholar 

  192. Stains JP, Gay CV: Inhibition of Na+/Ca2+ exchange with KB-R7943 or bepridil diminished mineral deposition by osteoblasts. J Bone Miner Res 16: 1434–1443, 2001

    Google Scholar 

  193. Solaro RJ, Bousquet P, Johnson JD: Stimulation of cardiac myofilament force, ATPase activity and troponin C Ca2+ binding by bepridil. J Pharmacol Exp Ther 238(2): 502–507, 1986

    Google Scholar 

  194. MacLachlan LK, Reid DG, Mitchell RC, Salter CJ, Smith SJ: Binding of a calcium sensitizer, bepridil, to cardiac troponin C. A fluorescence stopped-flow kinetic, circular dichroism, and proton nuclear magnetic resonance study. J Biol Chem 265(17): 9764–9770, 1990

    Google Scholar 

  195. Li Y, Love ML, Putkey JA, Cohen C: Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc Natl Acad Sci U S A 97(10): 5140–5145, 2000

    Google Scholar 

  196. Wang X, Li MX, Sykes BD: Structure of the regulatory N-domain of human cardiac troponin C in complex with human cardiac troponin I147–163 and bepridil. J Biol Chem 277: 31124–31133, 2002

    Google Scholar 

  197. Beier N, Harting J, Jonas R, Klockow M, Lues I, Haeusler G: The novel cardiotonic agent EMD 53 998 is a potent “calcium sensitizer”. J Cardiovasc Pharmacol 18(1): 17–27, 1991

    Google Scholar 

  198. Lues I, Beier N, Jonas R, Klockow M, Haeusler G: The two mechanisms of action of racemic cardiotonic EMD 53998, calcium sensitization and phosphodiesterase inhibition, reside in different enantiomers. J Cardiovasc Pharmacol 21(6): 883–892, 1993

    Google Scholar 

  199. Solaro RJ, Gambassi G, Warshaw DM, Keller MR, Spurgeon HA, Beier N, Lakatta EG: Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments. Circ Res 73(6): 981–990, 1993

    Google Scholar 

  200. Pan B-S, Johnson RGJ: Interaction of cardiotonic thiadiazinone derivatives with cardiac troponin C. J Biol Chem 271(2): 817–823, 1996

    Google Scholar 

  201. Li MX, Spyracopoulos L, Beier N, Putkey JA, Sykes BD: Inter-action of cardiac troponin C with Ca2+ sensitizer EMD57033 and cardiac troponin I inhibitory peptide. Biochemistry 39: 8782–8790, 2000

    Google Scholar 

  202. Wang X, Li MX, Spyracopoulos L, Beier N, Chandra M, Solaro RJ, Sykes BD: Structure of the C-domain of human cardiac troponin C in complex with the Ca2+ sensitizing drug EMD 57033. J Biol Chem 276: 25456–25466, 2001

    Google Scholar 

  203. Szilágyi S, Pollesello P, Levijoki J, Kaheinen P, Haikala H, Édes I, Papp Z: The mechanism of levosimendan and OR-1896-induced positive inotropy in isolated guinea pig hearts. Eur J Pharm 486: 67–74, 2004

    Google Scholar 

  204. Lancaster MK, Cook SJ: The effects of levosimendan on [Ca2+]i in guinea-pig isolated ventricular myocytes. Eur J Pharmacol 339: 97–100, 1997

    Google Scholar 

  205. Haikala H, Kaivola J, Nissinen E, Wall P, Levijoki J, Linden I-B: Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J Mol Cell Cardiol 27: 1859–1866, 1995

    Google Scholar 

  206. Edes I, Kiss E, Kitada Y, Powers FM, Papp JG, Kranias EG, Solaro RJ: Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res 77(1): 107–113, 1995

    Google Scholar 

  207. Hasenfuss G, Pieske B, Castell M, Kretschmann B, Maier LS, Just H: Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium. Circulation 98: 2141–2147, 1998

    Google Scholar 

  208. Haikala H, Nissinen E, Etemadzadeh E, Levijoki J, Linden I-B: Troponin C-mediated calcium sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol 25: 794–801, 1995

    Google Scholar 

  209. Kivikko M, Antila S, Eha J, Lehtonen L, Pentikäinen PJ: Pharmaco-dynamics and safety of a new calcium sensitizer, levosimendan, and its metabolites during an extended infusion in patients with severe heart failure. J Clin Pharmacol 43: 43–51, 2002

    Google Scholar 

  210. Levijoki J, Pollesello P, Kaivola J, Tilgmann C, Sorsa T, Annila A, Kilpeläinen I, Haikala H: Further evidence for the cardiac troponin C mediated calcium sensitization by levosimendan: Structure-response and binding analysis with analogs of levosimendan. J Mol Cell Cardiol 32: 479–491, 2000

    Google Scholar 

  211. Pollesello P, Ovaska M, Kaivola J, Tilgmann C, Lundström K, Kalkkinen N, Ulmanen I, Nissinen E, Taskinen J: Binding of a new Ca2+ sensitizer, levosimendan, to recombinant human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear magnetic resonance study. J Biol Chem 269: 28584–28590, 1994

    Google Scholar 

  212. Kleerekoper Q, Putkey JA: Drug binding to cardiac troponin C. J Biol Chem 274(34): 23932–23939, 1999

    Google Scholar 

  213. Sorsa T, Heikkinen S, Abbott MB, Abusamhadneh E, Laakso T, Tilgmann C, Serimaa R, Annila A, Rosevear PR, Drakenberg T, Polle-sello P, Kilpeläinen I: Binding of Levosimendan, a Calcium Sensitizer, to Cardiac Troponin C. J Biol Chem 276(12): 9337–9343, 2001

    Google Scholar 

  214. Sorsa T, Pollesello P, Permi P, Drakenberg T, Kilpeläinen I: Interaction of levosimendan with cardiac troponin C in the presence of cardiac troponin I peptides. J Mol Cell Cardiol 35(9): 1055–1061, 2003

    Google Scholar 

  215. Rosevear PR, Finley N: Molecular mechanism of levosimendan action: an update. J Mol Cell Cardiol 35: 1011–1015, 2003

    Google Scholar 

  216. Sorsa T, Pollesello P, Rosevear PR, Drakenberg T, Kilpeläinen I: Stereoselective binding of levosimendan to cardiac troponin C causes calcium sensitization. Eur J Pharmacol 486: 1–8, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorsa, T., Pollesello, P. & Solaro, R.J. The contractile apparatus as a target for drugs against heart failure: Interaction of levosimendan, a calcium sensitiser, with cardiac troponin c. Mol Cell Biochem 266, 87–107 (2004). https://doi.org/10.1023/B:MCBI.0000049141.37823.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000049141.37823.19

Navigation