Skip to main content

Advertisement

Log in

Nitric oxide and promotion of cardiac myocyte apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival. (Mol Cell Biochem 263: 35–53, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JF, Wyllie AH, Currie AR: Apoptosis, a basic biological phe-nomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257, 1972

    Google Scholar 

  2. Colucci WS: Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80: 15L–25L, 1997

    Google Scholar 

  3. Geng Y-J, Ishikawa Y, Vatner DE, Wagner, TE, Bishop SP, Vatner SF, Homcy CJ: Apoptosis of cardiac myocytes in Gs transgenic mice. Circ Res 84(1), 34: 99, 1999

    Google Scholar 

  4. Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL: Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31: 1709–1715, 1999

    Google Scholar 

  5. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH: Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86: 692–699, 2000

    Google Scholar 

  6. Lim H, Fallavollita JA, Hard R, Kerr CW, Canty JM Jr.: Profound apoptosis-mediated regional myocyte loss and compensatory hyper-trophy in pigs with hibernating myocardium. Circulation 100: 2380–2386, 1999

    Google Scholar 

  7. Lee WL, Chen JW, Ting CT, Ishiwata T, Lin SJ, Korc M, Wang PH: Insulin-like growth factor I improves cardiovascular function and sup-presses apoptosis of cardiomyocytes in dilated cardiomyopathy. En-docrinology 140: 4831–4840, 1999

    Google Scholar 

  8. Welch S, Plank D, Witt S, Glascock B, Schaefer E, Chimenti S, Andreoli AM, Limana F, Leri A, Kajstura J, et al: Cardiac-specific.48 IGF-1 expression attenuates dilated cardiomyopathy in tropomodulin-overexpressing transgenic mice. Circ Res 90: 641–648, 2002

    Google Scholar 

  9. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74: 86–107, 1996

    Google Scholar 

  10. Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR Jr., et al: Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apopto-sis by carvedilol. Circ Res 82: 166–174, 1998

    Google Scholar 

  11. Kang PM, Izumo S: Apoptosis and heart failure: A critical review of the literature. Circ Res 86: 1107–1113, 2000

    Google Scholar 

  12. Krijnen PA, Nijmeijer R, Meijer CJ, Visser CA, Hack CE, Niessen HW: Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55: 801–811, 2002

    Google Scholar 

  13. Narula J, Hajjar RJ, Dec GW: Apoptosis in the failing heart. Cardiol Clin 16: 691–710, ix. 1998

    Google Scholar 

  14. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, et al: Apoptosis in the failing human heart. N Engl J Med 336: 1131–1141, 1997

    Google Scholar 

  15. Kanoh M, Takemura G, Misao J, Hayakawa Y, Aoyama T, Nishigaki K, Noda T, Fujiwara T, Fukuda K, Minatoguchi S, et al: Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: Not apoptosis but DNA repair. Circulation 99: 2757–2764, 1999

    Google Scholar 

  16. Filippatos G, Leche C, Sunga R, Tsoukas A, Anthopoulos P, Joshi I, Bifero A, Pick R, Uhal BD: Expression of FAS adjacent to fibrotic foci in the failing human heart is not associated with increased apoptosis. Am J Physiol 277: H445–H451, 1999

    Google Scholar 

  17. Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami CA, Kajstura J, Anversa P: Myocyte death in the failing human heart is gender dependent. Circ Res 85: 856–866, 1999

    Google Scholar 

  18. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, et al: Apoptosis in heart failure: Release of cytochrome c from mitochondria and acti-vation of caspase-3 in human cardiomyopathy [see comments]. Proc Natl Acad Sci U S A96: 8144–8149, 1999

    Google Scholar 

  19. Frustaci A, Chimenti C, Setoguchi M, Guerra S, Corsello S, Crea F, Leri A, Kajstura J, Anversa P, Maseri A: Cell death in acromegalic cardiomyopathy. Circulation 99: 1426–1434, 1999

    Google Scholar 

  20. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN: A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111: 1497, 2003

    Google Scholar 

  21. Wyllie AH, Kerr JFR, Currie AR: Cell death: Significance of apoptosis. Int Rev Cytol 68: 251–306, 1980

    Google Scholar 

  22. Bossy-Wetzel E, Newmeyer DD, Green DR: Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17: 37–49, 1998

    Google Scholar 

  23. McCarthy NJ, Whyte MK, Gilbert CS, Evan GI: Inhibition of Ced-3/ ICE-related proteases does not prevent cell death induced by onco-genes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136: 215–227, 1997

    Google Scholar 

  24. Messam CA, Pittman RN: Asynchrony and commitment to die during apoptosis. Exp Cell Res 238: 389–398, 1998

    Google Scholar 

  25. Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501, 1992

    Google Scholar 

  26. Earnshaw WC, Martins LM, Kaufmann SH: Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Ann Rev Biochem 68: 383–424, 1999

    Google Scholar 

  27. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, et al: Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14: 729–739, 2000

    Google Scholar 

  28. Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G: Lysosomal membrane permeabi-lization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197: 1323–1334, 2003

    Google Scholar 

  29. Lockshin RA, Zakeri Z: Caspase-independent cell deaths. Curr Opin Cell Biol 14: 727–733, 2002

    Google Scholar 

  30. Jaattela M:Programmed cell death: Many ways for cells to die decently. Ann Med 34: 480–488, 2002

    Google Scholar 

  31. Hengartner MO: The biochemistry of apoptosis. Nature 407: 770–776, 2000

    Google Scholar 

  32. Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501, 1998

    Google Scholar 

  33. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ: Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274: 1156–1163, 1999

    Google Scholar 

  34. Schumann J, Angermuller S, Bang R, Lohoff M, Tiegs G: Acute hepatotoxicity of Pseudomonas aeruginosa exotoxin A in mice depends on T cells and TNF. J Immunol 161: 5745–5754, 1998

    Google Scholar 

  35. Derfuss T, Meinl E: Herpesviral proteins regulating apoptosis. Curr Top Microbiol Immunol 269: 257–272, 2002

    Google Scholar 

  36. Bhattacharyya A, Pathak S, Basak C, Law S, Kundu M, Basu J: Execution of macrophage apoptosis by mycobacterium avium through apop-tosis signal-regulating kinase 1/p38 mitogen-activated protein kinase signaling and caspase 8 activation. J Biol Chem 278: 26517–26525, 2003

    Google Scholar 

  37. Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A: The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19: 3325–3336, 2000

    Google Scholar 

  38. Wollert KC, Heineke J, Westermann J, Ludde M, Fiedler B, Zierhut W, Laurent D, Bauer MK, Schulze-Osthoff K, Drexler H: The cardiac Fas (APO-1/CD95) receptor/fas ligand system: Relation diastolic wall stress in volume-overload hypertrophy in vivo and activation of the transcription factor AP-1 in cardiac myocytes. 101: 1172–1178, 2000

    Google Scholar 

  39. Nelson DP, Setser E, Hall DG, Schwartz SM, Hewitt T, Klevitsky R, Osinska H, Bellgrau D, Duke RC, Robbins J: Proinflammatory consequences of transgenic fas ligand expression in the heart. J Clin Invest 105: 1199–1208, 2000

    Google Scholar 

  40. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN: Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284: H456, 2003

    Google Scholar 

  41. Nakamura T, Ueda Y, Juan Y, Katsuda S, Takahashi H, Koh E: Fas-mediated apoptosis in adriamycin-induced cardiomy-opathy in rats: In vivo study. Circulation 102: 572–578, 2000

    Google Scholar 

  42. Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, Levy D, Wilson PW, D'Agostino RB: In-flammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: The Framingham Heart Study. Circulation 107: 1486–1491, 2003

    Google Scholar 

  43. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA: Tumor necrosis fac-tor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98: 2854–2865, 1996.49

    Google Scholar 

  44. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH: Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 84: 21–33, 1999

    Google Scholar 

  45. Mustapha S, Kirshner A, De Moissac D, Kirshenbaum LA: A direct requirement of nuclear factor-kappa B for suppression of apoptosis in ventricular myocytes. Am J Physiol Heart Circ Physiol 279: H939–H945, 2000

    Google Scholar 

  46. Song W, Lu X, Feng Q: Tumor necrosis factor-alpha induces apoptosis via inducible nitric synthase in neonatal mouse cardiomyocytes. 45: 595–602, 2000

    Google Scholar 

  47. Li X, Moody MR, Engel D, Walker S, Clubb FJ Jr., Sivasubramanian N, Mann DL, Reid MB: Cardiac-specific overexpression of tumor necro-sis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm [In Process Citation]. Circulation 102: 1690–1696, 2000

    Google Scholar 

  48. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL: Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A 97: 5456–5461, 2000

    Google Scholar 

  49. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC 3rd, Nunez G: ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85: e700–e77, 1999

    Google Scholar 

  50. Mann DL: Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circ Res 91: 988–998, 2002

    Google Scholar 

  51. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT: Ran-domized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: Results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107: 3133–3140, 2003

    Google Scholar 

  52. Bishopric NH, Andreka P, Slepak T, Webster KA: Molecular mech-anisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1: 141–150, 2001

    Google Scholar 

  53. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW: Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408: 1004–1008, 2000

    Google Scholar 

  54. Halestrap AP: The mitochondrial permeability transition: Its molecular mechanism and role in reperfusion injury. Biochem Soc Symp 66: 181–203, 1999

    Google Scholar 

  55. Andreyev A, Fiskum G: Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ 6: 825–832, 1999

    Google Scholar 

  56. Zoratti M, Szabó I: The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–176, 1995

    Google Scholar 

  57. Chelli B, Falleni A, Salvetti F, Gremigni V, Lucacchini A, Martini C: Peripheral-type benzodiazepine receptor ligands: Mitochondrial per-meability transition induction in rat cardiac tissue. Biochem Pharmacol 61: 695–705, 2001

    Google Scholar 

  58. Bishopric NH, Andreka P, Slepak TI, Webster KA: Molecular mech-anisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1: 141–150, 2001

    Google Scholar 

  59. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/ caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489, 1997

    Google Scholar 

  60. Zou H, Li Y, Liu X, Wang X: An APAF-1. cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549–11556, 1999

    Google Scholar 

  61. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X: Bid, a Bcl2 in-teracting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490, 1998

    Google Scholar 

  62. Bossy-Wetzel E, Green DR: Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274: 17484–17490, 1999

    Google Scholar 

  63. Bialik S, Cryns VL, Drincic A, Miyata S, Wollowick AL, Srinivasan A, Kitsis RN: The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85: 403–414, 1999

    Google Scholar 

  64. Cook SA, Sugden PH, Clerk A: Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac my-ocytes: Association with changes in mitochondrial membrane poten-tial. Circ Res 85: 940–949, 1999

    Google Scholar 

  65. De Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA: Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 32: 53–63, 2000

    Google Scholar 

  66. Stefanelli C, Stanic I, Zini M, Bonavita F, Flamigni F, Zambonin L, Landi L, Pignatti C, Guarnieri C, Caldarera CM: Polyamines directly induce release of cytochrome c from heart mitochondria. Biochem J 347 (Pt 3): 875–880, 2000

    Google Scholar 

  67. Adams JW, Pagel AL, Means CK, Oxsenberg D, Armstrong RC, Brown JH: Cardiomyocyte apoptosis induced by Gaq signalling is mediated by permeability transition pore formation and activa-tion of the mitochondrial death pathway. Circ Res 87: 1180–1187, 2000

    Google Scholar 

  68. Burgess DH, Svensson M, Dandrea T, Gronlund K, Hammarquist F, Orrenius S, Cotgreave IA: Human skeletal muscle cytosols are refrac-tory to cytochrome c-dependent activation of type-II caspases and lack APAF-1. Cell Death Differ 6: 256–261, 1999

    Google Scholar 

  69. Andrieu-Abadie N, Jaffrezou JP, Hatem S, Laurent G, Levade T, Mercaider JJ: L-carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: Role of inhibition of ceramide generation. FASEB J 13: 1501–1510, 1999

    Google Scholar 

  70. Akao M, Ohler A, O'Rourke B, Marbán E: Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res 88: 1267–1275, 2001

    Google Scholar 

  71. Antonsson B, Martinou JC: The Bcl-2 protein family. Exp Cell Res 256: 50–57, 2000

    Google Scholar 

  72. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G: Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci U S A 95: 4386–4391, 1998

    Google Scholar 

  73. Pan G, O'Rourke K, Dixit VM: Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 273: 5841–5845, 1998

    Google Scholar 

  74. Pandey P, Avraham S, Place A, Kumar V, Majumder PK, Cheng K, Nakazawa A, Saxena S, Kharbanda S: Bcl-xL blocks activation of related adhesion focal tyrosine kinase/proline-rich tyrosine kinase 2 and stress-activated protein kinase/c-Jun N-terminal protein kinase in the cellular response to methylmethane sulfonate. J Biol Chem 274: 8618–8623, 1999

    Google Scholar 

  75. Srivastava RK, Sollott SJ, Khan L, Hansford R, Lakatta EG, Longo DL: Bcl-2 and Bcl-X(L) block thapsigargin-induced nitric oxide gen-eration, c-Jun NH(2)-terminal kinase activity, and apoptosis. Mol Cell Biol 19: 5659–5674, 1999

    Google Scholar 

  76. McDonald TE, Grinman MN, Carthy CM, Walley KR: Endotoxin in-fusion in rats induces apoptotic and survival pathways in hearts. Am J Physiol Heart Circ Physiol 279: H2053–H2061, 2000

    Google Scholar 

  77. Hu Y, Zou Y, Hala M, Dietrich H, Wick G, Xu Q: Prolonged survival of heart allografts from p53-deficient mice. Transplantation 69: 2634–2640, 2000

    Google Scholar 

  78. Petrovic D, Zorc-Pleskovic R, Zorc M: Apoptosis and proliferation of cardiomyocytes in heart failure of different etiologies. Cardiovasc Pathol 9: 149–152, 2000.

    Google Scholar 

  79. Latif N, Khan MA, Birks E, O'Farrell A, Westbrook J, Dunn MJ, Yacoub MH: Upregulation of the Bcl-2 family of proteins in end stage heart failure. J Am Coll Cardiol 35: 1769–1777, 2000

    Google Scholar 

  80. Francis GS, Anwar F, Bank AJ, Kubo SH, Jessurun J: Apoptosis, Bcl-2, and proliferating cell nuclear antigen in the failing human heart: Observations made after implantation of left ventricular assist device. J Card Fail 5: 308–315, 1999

    Google Scholar 

  81. Bartling B, Milting H, Schumann H, Darmer D, Arusoglu L, Koerner MM, El-Banayosy A, Koerfer R, Holtz J, Zerkowski HR: Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation 100: II216–II223, 1999

    Google Scholar 

  82. Leri A, Fiordaliso F, Setoguchi M, Limana F, Bishopric NH, Kajstura J, Webster K, Anversa P: Inhibition of p53 function prevents renin-angiotensin system activation and stretch-mediated myocyte apoptosis. Am J Pathol 157: 843–857, 2000

    Google Scholar 

  83. Azhar G, Liu L, Zhang X, Wei JY: Influence of age on hypoxia/reoxygenation-induced DNA fragmentation and bcl-2, bcl-xl, bax and fas in the rat heart and brain. Mech Ageing Dev 112: 5–25, 1999

    Google Scholar 

  84. Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA: Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99: 12825–12830, 2002

    Google Scholar 

  85. Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC, Aronow BJ, Lorenz JN, Dorn GW 2nd: Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomy-opathy. Nat Med 8: 725–730, 2002

    Google Scholar 

  86. Wood DE, Newcomb EW: Cleavage of Bax enhances its cell death function. Exp Cell Res 256: 375–382, 2000

    Google Scholar 

  87. Yamamoto K, Ichijo H, Korsmeyer SJ: BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway nor-mally activated at G(2)/M. Mol Cell Biol 19: 8469–8478, 1999

    Google Scholar 

  88. Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou JC, et al: Bcl-2 un-dergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 272: 25238–25242, 1997

    Google Scholar 

  89. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ: Serine phosphory-lation of death agonist BAD in response to survival factor results in binding to 14–3-3 not Bcl-xL. Cell 87: 619–628, 1996

    Google Scholar 

  90. Kirsch DG, Doseff A, Chau BN, Lim DS, De Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, Hardwick JM: Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274: 21155–21161, 1999

    Google Scholar 

  91. Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501, 1998

    Google Scholar 

  92. Iwamoto H, Miura T, Okamura T, Shirakawa K, Iwatate M, Kawamura S, Tatsuno H, Ikeda Y, Matsuzaki M:Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol 33: 580–586, 1999

    Google Scholar 

  93. Wood DE, Newcomb EW: Cleavage of Bax enhances its cell death function. Exp Cell Res 256: 375–382, 2000

    Google Scholar 

  94. Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H: Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: A mechanism of "patholog-ical apoptosis"? J Biol Chem 276: 10191–10198, 2001

    Google Scholar 

  95. Gil-Parrado S, Fernandez-Montalvan A, Assfalg-Machleidt I, Popp O, Bestvater F, Holloschi A, Knoch TA, Auerswald EA, Welsh K, Reed JC, et al: Ionomycin-activated calpain triggers apoptosis. A proba-ble role for Bcl-2 family members. J Biol Chem 277: 27217–27226, 2002

    Google Scholar 

  96. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331, 1995

    Google Scholar 

  97. Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM: Serine/threonine protein kinases and apoptosis. Exp Cell Res 256: 34–41, 2000

    Google Scholar 

  98. Laderoute KR, Webster KA: Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res 80: 336–344, 1997

    Google Scholar 

  99. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL: Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves car-diac function after myocardial ischemia and reperfusion. Circulation 99: 1685–1691, 1999

    Google Scholar 

  100. Cook SA, Sugden PH, Clerk A: Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure sec-ondary to ischaemic heart disease. J Mol Cell Cardiol 31: 1429–1434, 1999

    Google Scholar 

  101. Gillespie-Brown J, Fuller SJ, Bogoyevitch MA, Cowley S, Sugden PH: The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiomyocytes. J Biol Chem 270: 28092–28096, 1995

    Google Scholar 

  102. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR: Cardiac hypertro-phy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 273: 5423–5426, 1998

    Google Scholar 

  103. Widmann C, Gibson S, Jarpe MB, Johnson GL: Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180, 1999

    Google Scholar 

  104. Yujiri T, Fanger GR, Garrington TP, Schlesinger TK, Gibson S, Johnson GL: MEKkinase 1 (MEKK1) transduces c-Jun NH2-terminal kinase activation in response to changes in the microtubule cytoskeleton. J Biol Chem 274: 12605–12610, 1999

    Google Scholar 

  105. Davis RJ: Signal transduction by the JNK group of MAP kinases [In Process Citation]. Cell 103: 239–252, 2000

    Google Scholar 

  106. Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, et al: MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100: 2100–2107, 1999

    Google Scholar 

  107. Communal C, Colucci WS, Singh K: p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta-adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem 275: 19395–19400, 2000

    Google Scholar 

  108. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT: The beta2-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-dependent coupling to phosphatidylinos-itol 3-kinase. Circ Res 87: 1172–1179, 2000

    Google Scholar 

  109. Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, et al: MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100: 2100–2107, 1999

    Google Scholar 

  110. Kang YJ, Zhou ZX, Wang GW, Buridi A, Klein JB: Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem 275: 13690–13698, 2000

    Google Scholar 

  111. Mackay K, Mochly-Rosen D: Involvement of a p38 mitogen-activated protein kinase phosphatase in protecting neonatal rat cardiac myocytes from ischemia. J Mol Cell Cardiol 32: 1585–1588, 2000

    Google Scholar 

  112. Craig R, Larkin A, Mingo AM, Thuerauf DJ, Andrews C, McDonough PM,Glembotski CC: p38 MAPKand NF-kappa Bcollaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotec-tive autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem 275: 23814–23824, 2000.

    Google Scholar 

  113. Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC: Al-pha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response 275: 23825–23833, 2000

    Google Scholar 

  114. Zechner D, Craig R, Hanford DS, McDonough PM, Sabbadini RA, Glembotski CC: MKK6 activates myocardial cell NF-kappaB and in-hibits apoptosis in a p38 mitogen-activated protein kinase-dependent manner. J Biol Chem 273: 8232–8239, 1998

    Google Scholar 

  115. Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y: Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125(FAK)) in cultured rat cardiac my-ocytes. Biochem Biophys Res Commun 259: 8–14, 1999

    Google Scholar 

  116. LaPointe MC, Isenovic E: Interleukin-1beta regulation of inducible nitric oxide synthase and cyclooxygenase-2 involves the p42/44 and p38 MAPK signaling pathways in cardiac myocytes. Hypertension 33: 276–282, 1999

    Google Scholar 

  117. Laderoute KR, Webster KA: Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res 80: 336–344, 1997

    Google Scholar 

  118. Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M, Izumo S: Direct Activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277(10244): 12, 2002

    Google Scholar 

  119. Remondino A, Kwon SH, Communal C, Pimentel DR, Sawyer DB, Singh K, Colucci WS: β-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92(136): 2, 2003

    Google Scholar 

  120. Minamino T, Yujiri T, Papst PJ, Chan ED, Johnson GL, Terada N: MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived cardiac myocytes. Proc Natl Acad Sci U S A 96: 15127–15132, 1999

    Google Scholar 

  121. Andreka P, Dougherty C, Slepak TI, Webster KA, Bishopric NH: Cyto-protection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res 88: 305–312, 2001

    Google Scholar 

  122. Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA: Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362: 561–571, 2002

    Google Scholar 

  123. Fryer Ryan M, Patel Hemal H, Hsu Anna K, Gross Garrett J: Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. Am J Physiol Heart Circ Physiol 281(3): H1184, 2001

    Google Scholar 

  124. Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, Takagi G, Karoor V, Hong C, Johnson GL, Vatner DE, Vatner SF: The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 110(271): 2, 2002

    Google Scholar 

  125. Roulston A, Reinhard C, Amiri P, Williams LT: Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in re-sponse to tumor necrosis factor alpha. J Biol Chem 273: 10232–10239, 1998

    Google Scholar 

  126. Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM: Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 60: 1789–1792, 2000

    Google Scholar 

  127. Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B: Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is amelio-rated by nitrone spin traps and ebselen—Role of reactive oxygen and nitrogen species. J Biol Chem 275: 33585–33592, 2000

    Google Scholar 

  128. Chen QM, Tu VC, Wu Y, Bahl JJ: Hydrogen peroxide dose depen-dent induction of cell death or hypertrophy in cardiomyocytes. Arch Biochem Biophys 373: 242–248, 2000

    Google Scholar 

  129. Gottleib RA, Burleson KO, Kloner RA, Babior BM, Engler RL: Reper-fusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94: 1621–1628, 1994

    Google Scholar 

  130. Webster KA, Discher DJ, Kaiser S, Hernandez O, Sato B, Bishopric NH: Hypoxia-activated apoptosis of cardiac myocytes requires reoxy-genation or a pH shift and is independent of p53. J Clin Invest 104: 239–252, 1999

    Google Scholar 

  131. Zhao ZQ, Nakamura M, Wang NP, Wilcox JN, Shearer S, Ronson RS, Guyton RA, Vinten-Johansen J: Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 45: 651–660, 2000

    Google Scholar 

  132. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: Amechanism of O2 sensing. J Biol Chem 275: 25130–25138, 2000

    Google Scholar 

  133. Hernandez OM, Discher DJ, Bishopric NH, Webster KA: Rapid activa-tion of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ Res 86: 198–204, 2000

    Google Scholar 

  134. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH: Lipotoxic heart disease in obese rats: Implications for human. Proc Natl Acad Sci U S A 97: 1784–1789

  135. Christopherson KS, Bredt DS: Nitric oxide in excitable tissues: Phys-iological roles and disease. J Clin Invest 100: 2424–2429, 1997

    Google Scholar 

  136. Balligand J-L, Kelly RA, Marsden PA, Smith TW, Michel T: Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A 90: 347–351, 1993

    Google Scholar 

  137. Balligand J-L, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T, Smith TW: Abnormal contractile function due to induction of ni-tric oxide synthesis in rat cardiac myocytes follows exposure to acti-vated macrophage-conditioned medium. J Clin Invest 91: 2314–2319, 1993

    Google Scholar 

  138. Loh E, Stamler JS, Hare JM, Loscalzo J, Colucci WS: Cardiovascular effects of inhaled nitric oxide in patients with left ventricular dysfunc-tion. Circulation 90: 2780–2785, 1994

    Google Scholar 

  139. Hare JM, Colucci WS: Role of nitric oxide in the regulation of my-ocardial function. Prog Cardiovasc Dis 38: 155–166, 1995

    Google Scholar 

  140. Hare JM, Loh E, Creager MA, Colucci WS: Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in hu-mans with left ventricular dysfunction. Circulation 92: 2198–2203, 1995

    Google Scholar 

  141. Pabla R, Curtis MJ: Effects of NO modulation on cardiac arrhythmias in the rat isolated heart. Circ Res 77: 984–992, 1995

    Google Scholar 

  142. Mohan P, Brutsaert DL, Paulus WJ, Sys SU: Myocardial contractile response to nitric oxide and cGMP. Circulation 93: 1223–1229, 1996

    Google Scholar 

  143. Kelly RA, Balligand J-L, Smith TW: Nitric oxide and cardiac function. Circ Res 79: 363–380, 1997

    Google Scholar 

  144. Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ: The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor ?.J Clin Invest 95: 677–685, 1995

    Google Scholar 

  145. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA: Cytokine-mediated apoptosis in cardiac myocytes: The role of inducible nitric oxide syn-thase induction and peroxynitrite generation. Circ Res 85: 829–840, 1999

    Google Scholar 

  146. Pinsky DJ, Aji W, Szabolcs M, Athan ES, Liu Y, Yang YM, Kline RP, Olson KE, Cannon PJ: Nitric oxide triggers programmed cell death (apoptosis) of adult rat ventricular myocytes in culture. Am J Physiol 277: H1189–H1199, 1999

    Google Scholar 

  147. Callsen D, Brune B: Role of mitogen-activated protein kinases in S-nitrosoglutathione-induced macrophage apoptosis. Biochemistry 38: 2279–2286, 1999

    Google Scholar 

  148. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P: Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with.52 interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arterioscler Thromb Vasc Biol 16: 19–27, 1996

    Google Scholar 

  149. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P: Stretch-induced programmed myocyte cell death. J Clin Invest 96: 2247–2259, 1995

    Google Scholar 

  150. Stefanelli C, Pignatti C, Tantini B, Stanic I, Bonavita F, Muscari C, Guarnieri C, Clo C, Caldarera CM: Nitric oxide can function as ei-ther a killer molecule or an antiapoptotic effector in cardiomyocytes. Biochim Biophys Acta 1450: 406–413, 1999

    Google Scholar 

  151. Shinmura K, Tang XL, Takano H, Hill M, Bolli R: Nitric oxide donors attenuate myocardial stunning in conscious rabbits. Am J Physiol 277: H2495–H2503, 1999

    Google Scholar 

  152. Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC, Banerjee S, Dawn B, Balafonova Z, Bolli R: Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: Asignaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 84: 587–604, 1999

    Google Scholar 

  153. Wingrove JA, O'Farrell PH: Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98: 105–114, 1999

    Google Scholar 

  154. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS: Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79: 1137–1146, 1994

    Google Scholar 

  155. Dimmeler S, Haendeler J, Sause A, Zeiher AM: Nitric oxide inhibits APO-1/Fas-mediated cell death. Cell Growth Differ 9: 415–422, 1998

    Google Scholar 

  156. Dimmeler S, Zeiher AM: Nitric oxide—An endothelial cell survival factor [see comments]. Cell Death Differ 6: 964–968, 1999

    Google Scholar 

  157. Kim YM, Chung HT, Kim SS, Han JA, Yoo YM, Kim KM, Lee GH, Yun HY, Green A, Li J, et al: Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J Neurosci 19: 6740–6747, 1999

    Google Scholar 

  158. Li J, Bombeck CA, Yang S, Kim YM, Billiar TR: Nitric oxide sup-presses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem 274: 17325–17333, 1999

    Google Scholar 

  159. Weiland U, Haendeler J, Ihling C, Albus U, Scholz W, Ruetten H, Zei-her AM, Dimmeler S: Inhibition of endogenous nitric oxide synthase potentiates ischemia-reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway. 45: 671–678, 2000

    Google Scholar 

  160. Stamler JS, Lamas S, Fang FC: Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106: 675–683, 2001

    Google Scholar 

  161. Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A: Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30: 463–488, 2001

    Google Scholar 

  162. Balligand JL, Cannon PJ: Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol 17: 1846–1858, 1997

    Google Scholar 

  163. Geller DA, Billiar TR: Molecular biology of nitric oxide synthases. Cancer Metastasis 17: 7–23, 1998

    Google Scholar 

  164. Brown GC, Borutaite V: Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp 66: 17–25, 1999

    Google Scholar 

  165. Robbins RA, Grisham MB: Nitric oxide. Int J Biochem Cell Biol 29: 857–860, 1997

    Google Scholar 

  166. Balligand J-L, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M, Taha Z, Lowenstein CJ, Davidoff AJ, Kelly RA, et al: Cytokine-inducible nitric oxide synthase (iNOS) ex-pression in cardiac myocytes. J Biol Chem 269: 27580–27588, 1994

    Google Scholar 

  167. Ungureanu-Longrois D, Balligand J-L, Simmons WW, Okada I, Kobzik L, Lowenstein CJ, Kunkel SL, Michel T, Kelly RA, Smith TW: Induction of nitric oxide synthase activity by cytokines in ven-tricular myocytes is necessary but not sufficient to decrease contrac-tile responsiveness to β-adrenergic agonists. Circ Res 77: 494–502, 1995

    Google Scholar 

  168. Stein B, Frank P, Schmitz W, Scholz H, Thoenes M: Endotoxin and cytokines induce direct cardiodepressive effects in mammalian car-diomyocytes via induction of nitric oxide synthase. J Mol Cell Cardiol 28: 1631–1639, 1996

    Google Scholar 

  169. Xie Q, Nathan C: The high-output nitric oxide pathway: Role and regulation. J Leukoc Biol 56: 576–582, 1994

    Google Scholar 

  170. Xie Q-W, Whisnant R, Nathan C: Promoter of the mouse gene encod-ing calcium-independent nitric oxide synthase confers inducibility by interferon-ã and bacterial lipopolysaccharide. J Exp Med 177: 1779–1784, 1993

    Google Scholar 

  171. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL: Tumor necrosis factor-alpha and tumor necrosis factor re-ceptors in the failing human heart. Circulation 93: 704–711, 1996

    Google Scholar 

  172. de Belder AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF: My-ocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopa-thy but not in ischaemic or valvar heart disease. Br Heart J 74: 426–430, 1995

    Google Scholar 

  173. Lewis NP, Tsao PS, Rickenbacher PR, Xue C, Johns RA, Haywood GA, von der Leyen H, Trindade PT, Cooke JP, Hunt SA, et al: Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dysfunction of the left ventricle. Circulation 93: 720–729, 1996

    Google Scholar 

  174. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, et al: Expression of inducible nitric oxide synthase in human heart failure. Circulation 93: 1087–1094, 1996

    Google Scholar 

  175. Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Po-lak JM: Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy [see Comments]. Lancet 347: 1151–1155, 1996

    Google Scholar 

  176. Thoenes M, Forstermann U, Tracey WR, Bleese NM, Nussler AK, Scholz H, Stein B: Expression of inducible nitric oxide synthase in failing and non-failing human heart. J Mol Cell Cardiol 28: 165–169, 1996

    Google Scholar 

  177. Fukuchi M, Hussain SN, Giaid A: Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: Their relation to lesion site and beta-adrenergic receptor therapy. Circulation 98: 132–139, 1998

    Google Scholar 

  178. Vejlstrup NG, Bouloumie A, Boesgaard S, Andersen CB, Nielsen-Kudsk JE, Mortensen SA, Kent JD, Harrison DG, Busse R, Aldershvile J: Inducible nitric oxide synthase (iNOS) in the human heart: Expres-sion and localization in congestive heart failure. J Mol Cell Cardiol 30: 1215–1223, 1998

    Google Scholar 

  179. Wu C-F, Bishopric NH, Pratt RE: Atrial natriuretic peptide induces apoptosis in rat cardiac myocytes. J Biol Chem 272: 14860–14866, 1997

    Google Scholar 

  180. Wollert KC, Fiedler B, Gambaryan S, Smolenski A, Heineke J, Butt E, Trautwein C, Lohmann SM, Drexler H: Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic ef-fects of nitric oxide in cardiomyocytes. Hypertension 39: 87–92–87-92, 2002

    Google Scholar 

  181. Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F, Johnson GL, Karin M: Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290, 1995

    Google Scholar 

  182. Feelisch M, Stamler JS: Donors of nitrogen oxides. In: M Feelisch, JS Stamler (eds). Methods in Nitric Oxide Research. John Wiley and Sons, New York 1996, pp 71–115

    Google Scholar 

  183. Johnson NL, Gardner AM, Diener KM, Lange-Carter CA, Gleavy J, Jarpe MB, Minden A, Karin M, Zon LI, Johnson GL: Signal transduc-tion pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. J Biol Chem 271: 3229–3337, 1996.

    Google Scholar 

  184. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ: Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874, 2000

    Google Scholar 

  185. Wang Y, Huang S, Sah VP, Ross J Jr., Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273: 2161–2168, 1998

    Google Scholar 

  186. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL: The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transfor-mation. Proc Natl Acad Sci U S A 92: 11746–11750, 1995

    Google Scholar 

  187. Assefa Z, Vantieghem A, Declercq W, Vandenabeele P, Vandenheede JR, Merlevede W, De Witte P, Agostinis P: The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase sig-naling pathways protects HeLa cells from apoptosis following pho-todynamic therapy with hypericin. J Biol Chem 274: 8788–8796, 1999

    Google Scholar 

  188. Li J, Billiar TR, Talanian RV, Kim YM: Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240: 419–424, 1997

    Google Scholar 

  189. Goldstein JC, Kluck RM, Green D: RA single cell analysis of apoptosis. Ordering the apoptotic phenotype. Ann N Y Acad Sci 926: 132–141, 2000

    Google Scholar 

  190. Forfia PR, Hintze TH, Wolin MS, Kaley G: Role of nitric oxide in the control of mitochondrial function. Adv Exp Med Biol 471: 381–388 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andréka, P., Tran, T., Webster, K.A. et al. Nitric oxide and promotion of cardiac myocyte apoptosis. Mol Cell Biochem 263, 35–53 (2004). https://doi.org/10.1023/B:MCBI.0000041847.63338.b8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000041847.63338.b8

Navigation