Skip to main content
Log in

Altered Mg2+ transport across liver plasma membrane from streptozotocin-treated rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Type-I diabetes is associated with a decrease in magnesium content in various tissues, including liver. We have reported that hepatocytes from streptozotocin-injected rats have lost the ability to accumulate Mg2+ following hormonal stimulation. To assess whether the defect is inherent to the Mg2+ transport mechanism located in the hepatocyte cell membrane, plasma membrane vesicles were purified from diabetic livers. Diabetic plasma membranes do not retain intravesicular Mg2+as tightly as vesicles purified from livers of age-matched non-diabetic rats. In addition, the amount of intravesicular Mg2+ these vesicles exchange for extravesicular Na+ or Ca2+ is 2–3-fold larger than in non-diabetic vesicles. The partition of Ca2+/Mg2+ and Na+/Mg2+ exchange mechanisms in the apical and basolateral domains of liver plasma membrane is maintained under diabetic conditions, although the Na+/Mg2+ exchanger in diabetic basolateral membranes has lost the ability to operate in reverse and favor an accumulation of extravesicular Mg2+ within the vesicles in exchange for entrapped Na+. These data indicate the occurrence of a major alteration in Mg2+ transport across the hepatocyte membrane, which can explain, at least in part, the decrease in liver magnesium content observed in diabetic animals and patients. (Mol Cell Biochem 262: 145–154, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romani A, Scarpa A: Regulation of cell magnesium. Arch Biochem Biophys 298: 1–12, 1992.

    PubMed  Google Scholar 

  2. Gunther T: Mechanisms and regulation of Mg2+ efflux and Mg2+ influx. Miner Electrol Metab 19: 250–265, 1993.

    Google Scholar 

  3. Romani A, Scarpa A: Regulation of cellular magnesium. Front Biosci 5: d720–d734, 2000.

    PubMed  Google Scholar 

  4. Romani A, Marfella C, Scarpa A: Hormonal regulation of Mg2+ uptake in hepatocytes. J Biol Chem 268: 15489–15495, 1993.

    PubMed  Google Scholar 

  5. Romani A, Marfella C, Scarpa A: Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes. Circ Res 72: 1139–1148, 1993.

    PubMed  Google Scholar 

  6. Vormann J, Gunther T: Amiloride sensitive net Mg2+ efflux from isolated perfused rat hearts. Magnesium 6: 220–224, 1987.

    PubMed  Google Scholar 

  7. Zhang GH, Melvin JE: Secretagogue-induced mobilization of an intracellular Mg2+ pool in rat sublingual mucous acini. J Biol Chem 267: 20721–20727, 1992.

    PubMed  Google Scholar 

  8. Harman AW, Nieminen A-L, Lemasters JJ, Herman B: Cytosolic free magnesium, ATP, and blebbing during chemical hypoxia in cultured rat hepatocytes. Biochem Biophys Res Commun 170: 477–483, 1990.

    PubMed  Google Scholar 

  9. Tessman PA, Romani A: Acute effect of EtOH on Mg2+ homeostasis in liver cell: Evidence for the activation of an Na+/Mg2+ exchanger. Am J Physiol 275: G1106-G1115, 1998.

  10. Flatman PW: Mechanisms of magnesium transport. Annu Rev Physiol 53: 259–272, 1991.

    PubMed  Google Scholar 

  11. Gunther T, Hollriegl V: Na+-and anion-dependent Mg2+ influx in isolated hepatocytes. Biochim Biophys Acta 1149: 49–54, 1993.

    PubMed  Google Scholar 

  12. Gunther T, Vormann J: Activation of Na+/Mg2+ antiport in thymocytes by cAMP. FEBS Lett 297: 132–134, 1992.

    Article  PubMed  Google Scholar 

  13. Feray J-C, Garay R: Demonstration of a Na+:Mg2+ exchange in human red cells by its sensitivity to tricyclic antidepressant drugs. Naunyn Schmiedebergs Arch Pharmacol 338: 332–337, 1988.

    PubMed  Google Scholar 

  14. Cefaratti C, Romani A, Scarpa A: Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver. Am J Physiol 275: C995–C1008, 1998.

    PubMed  Google Scholar 

  15. Cefaratti C, Romani A, Scarpa A: Differential localization and operation of distinct Mg2+ transporters in apical and basolateral sides of rat liver plasma membrane. J Biol Chem 275: 3772–3880, 2000.

    Article  PubMed  Google Scholar 

  16. Fagan TE, Romani A: Activation of Na+-and Ca2+-dependent Mg2+ extrusion by α1-and β-adrenergic agonists in rat liver cells. Am J Physiol 279: G943–G950, 2000.

    Google Scholar 

  17. Wolf FI, Di Francesco A, Covacci V, Cittadini A: Regulation of magnesium efflux from rat spleeen lymphocytes. Arch Biochem Biophys 344: 397–403, 1997.

    Article  PubMed  Google Scholar 

  18. Romani A, Marfella C, Scarpa A: Regulation of Mg2+ uptake in isolated rat myocytes and hepatocytes by protein kinase C. FEBS Lett 296: 135–140, 1992.

    Article  PubMed  Google Scholar 

  19. Keenan D, Romani A, Scarpa A: Regulation of Mg2+ homeostasis by insulin in perfused rat livers and isolated hepatocytes. FEBS Lett 395: 241–244, 1996.

    Article  PubMed  Google Scholar 

  20. Romani A, Matthews V, Scarpa A: Parallel stimulation of glucose and Mg2+ accumulation by insulin in rat hearts and cardiac ventricular myocytes. Circ Res 86: 326–333, 2000.

    PubMed  Google Scholar 

  21. Resnick LM, Altura BT, Gupta RK, Laragh JH, Alderman MH, Altura BM: Intracellular and extracellular magnesium depletion in type II (noninsulin-dependent) diabetes mellitus. Diabetologia 36: 767–770, 1993.

    PubMed  Google Scholar 

  22. Wallach S, Verch R: Tissue magnesium content in diabetic rats. Magnesium 6: 302–306, 1987.

    PubMed  Google Scholar 

  23. Konstantakos AK, Fagan TE, Perez D, Romani A: Alteration in tissue and serum Mg2+ homeostasis in streptozotocin-treated rats, FASEB J 14, A266: 184.2, 2000.

    Google Scholar 

  24. Belfiore F, Iannello S, Rabuazzo AM, Campione R: Increased hexokinase/glucos-6-phosphatase ratio in the diabetic kidney as index of glucose utilization. Clin Physiol Biochem 7: 223–228, 1989.

    PubMed  Google Scholar 

  25. Ver A, Csermely P, Banyasz T, Kovacs T, Somogyi J: Alterations in the properties and isoform ratios of brain Na+/K+-ATPase in streptozotocin-diabetic rats. Biochim Biophys Acta 1237: 143–150, 1995.

    Article  PubMed  Google Scholar 

  26. Djemli-Shipkolye A, Raccah D, Pieroni G, Vague P, Coste TC, Gerbi A: Differential effect of w3 PUFA supplementation on Na,K-ATPase and Mg-ATPase activities: Possible role of the membrane w6/w3 ratio. J Membr Biol 191: 37–47, 2003.

    PubMed  Google Scholar 

  27. Blostein-Fujii A, DiSilvestro RA, Frid D, Katz C, Malarkey W: Short-term zinc supplementation in women with non-insulin-dependent diabetes mellitus: Effects on plasma 5′-nucleotidase activities, insulinlike growth factor I concentrations, and lipoprotein oxidation rates in vitro. Am J Clin Nutr 66: 639–642, 1997.

    PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr Al, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951.

    PubMed  Google Scholar 

  29. Fagan T, Cefaratti C, Romani A: The non-reversibility of Na+/Mg2+ exchanger results in the inability of diabetic liver cells to accumulate Mg2+ following hormonal stimulation. FASEB J 15: A391.6, 2002.

    Google Scholar 

  30. Sennoune S, Gerbi A, Duran MJ, Grillasca JP, Compe E, Pierre S, Planells R, Bourdeaux M, Vague P, Pieroni G, Maixent JM: Effect of streptozotocin-induced diabetes on rat liver Na+/K+-ATPase. Eur J Biochem 267: 2071–2078, 2000.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cefaratti, C., McKinnis, A. & Romani, A. Altered Mg2+ transport across liver plasma membrane from streptozotocin-treated rats. Mol Cell Biochem 262, 145–154 (2004). https://doi.org/10.1023/B:MCBI.0000038230.86485.52

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000038230.86485.52

Navigation