Skip to main content
Log in

Voltage-dependence of contraction in streptozotocin-induced diabetic myocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac contractile dysfunction is frequently reported in human patients and experimental animals with type-1 diabetes mellitus. The aim of this study was to investigate the voltage-dependence of contraction in ventricular myocytes from the streptozotocin (STZ)-induced diabetic rat. STZ-induced diabetes was characterised by hyperglycaemia and hypoinsulinaemia. Other characteristics included reduced body and heart weight and raised blood osmolarity. Isolated ventricular myocytes were patched in whole cell, voltage-clamp mode after correcting for membrane capacitance and series resistance. From a holding membrane potential of −40 mV, test pulses were applied at potentials between −30 and +50 mV in 10 mV increments. L-type Ca2+ current (I Ca,L) density and contraction were measured simultaneously using a video-edge detection system. Membrane capacitance was not significantly altered between control and STZ-induced diabetic myocytes. The I Ca,L density was significantly (p < 0.05) reduced throughout voltage ranges (−10 mV to +10 mV) in myocytes from STZ-treated rats compared to age-matched controls. Moreover, the amplitude of contraction was significantly reduced (p < 0.05) in myocytes from STZ-treated rats at all test potentials between −20 mV and +30 mV. However, in electrically field-stimulated (1 Hz) myocytes, the amplitude of contraction was not altered by STZ-treatment. It is suggested that in field-stimulated myocytes taken from STZ-induced diabetic hearts, prolonged action potential duration may promote increased Ca2+ influx via the sodium-calcium exchanger (NCX), which may compensate for a reduction in Ca2+ trigger through L-type-Ca2+-channels and lead to normalised contraction. (Mol Cell Biochem 261: 235–243, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Standl E, Schnell O: A new look at the heart in diabetes mellitus: From ailing to failing. Diabetologia 43: 1455–1469, 2000

    Article  CAS  PubMed  Google Scholar 

  2. Miettinen H, Lehto S, Salomaa V, Mahonen M, Niemela M, Haffner SM, Pyorala K, Tuomilehto J: Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care 21: 69–75, 1998

    CAS  Google Scholar 

  3. Pandit SV, Giles WR, Demir SS: A mathematical model of the electrophysiological alterations in rat ventricular myocytes in type-I diabetes. Biophys J 84: 832–841, 2003

    CAS  PubMed  Google Scholar 

  4. Wang DW, Kiyosue T, Shigematsu S, Arita M: Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rats with chronic diabetes. Am J Physiol 269: H1288–H1296, 1995

    CAS  PubMed  Google Scholar 

  5. Chattou S, Diacono J, Feuvray D: Decrease in sodium-calcium exchange and calcium currents in diabetic rat ventricular myocytes. Acta Physiol Scand 166: 137–144, 1999

    Article  CAS  PubMed  Google Scholar 

  6. Jourdon P, Feuvray D: Calcium and potassium currents in ventricular myocytes isolated from diabetic rats. J Physiol 470: 411–429, 1993

    CAS  PubMed  Google Scholar 

  7. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS: Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244: E528–E535, 1983

    CAS  PubMed  Google Scholar 

  8. Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS: Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50: 2133–2138, 2001

    CAS  PubMed  Google Scholar 

  9. Ren J, Davidoff AJ: Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol 272: H148–H158, 1997

    CAS  PubMed  Google Scholar 

  10. Hattori Y, Matsuda N, Kimura J, Ishitani T, Tamada A, Gando S, Kemmotsu O, Kanno M: Diminished function and expression of the cardiac Na+-Ca2+ exchanger in diabetic rats: Implication in Ca2+ overload. J Physiol 527(1): 85–94, 2000

    Article  CAS  PubMed  Google Scholar 

  11. Makino N, Dhalla KS, Elimban V, Dhalla NS: Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 253: E202–E207, 1987

    CAS  PubMed  Google Scholar 

  12. Heyliger CE, Prakash A, McNeill JH. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol 252: H540–H544, 1987

    CAS  PubMed  Google Scholar 

  13. Howarth FC, Qureshi MA, White E: Effects of hyperosmotic shrinking on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin-induced diabetic rats. Pflügers Arch 444: 446–451, 2002

    CAS  PubMed  Google Scholar 

  14. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA: Defective intracellular Ca2+ signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol 283: H1398–H1408, 2002

    CAS  Google Scholar 

  15. Ishitani T, Hattori Y, Sakuraya F, Onozuka H, Makino T, Matsuda N, Gando S, Kemmotsu O: Effects of Ca2+sensitizers on contraction, [Ca2+]i transient and myofilament Ca2+ sensitivity in diabetic rat myocardium: Potential usefulness as inotropic agents. J Pharmacol Exp Ther 298: 613–622, 2001

    CAS  PubMed  Google Scholar 

  16. Shimoni Y, Firek L, Severson D, Giles W: Short-term diabetes alters K+ currents in rat ventricular myocytes. Circ Res 74: 620–628, 1994

    CAS  PubMed  Google Scholar 

  17. Magyar J, Rusznak Z, Szentesi P, Szucs G, Kovacs L: Action potentials and potassium currents in rat ventricular muscle during experimental diabetes. J Mol Cell Cardiol 24: 841–853, 1992

    Article  CAS  PubMed  Google Scholar 

  18. Pacher P, Ungvari Z, Nanasi PP, Kecskemeti V: Electrophysiological changes in rat ventricular and atrial myocardium at different stages of experimental diabetes. Acta Physiol Scand 166: 7–13, 1999

    CAS  PubMed  Google Scholar 

  19. Shimoni Y, Severson D, Giles W: Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J Physiol 488(3): 673–688, 1995

    CAS  PubMed  Google Scholar 

  20. Shimoni Y, Ewart HS, Severson D: Type I and II models of diabetes produce different modifications of K+ currents in rat heart: Role of insulin. J Physiol 507: 485–496, 1998

    Article  CAS  PubMed  Google Scholar 

  21. Frampton JE, Orchard CH, Boyett MR: Diastolic, systolic and sarcoplasmic reticulum [Ca2+]i during inotropic interventions in isolated rat myocytes. J Physiol 437: 351–375, 1991

    CAS  PubMed  Google Scholar 

  22. Howarth FC, Calaghan SC, Boyett MR, White E: Effect of the microtubule polymerizing agent taxol on contraction, Ca2+ transient and L-type Ca2+ current in rat ventricular myocytes. J Physiol 516: 409–419, 1999

    Article  CAS  PubMed  Google Scholar 

  23. Brown AM, Lee KS, Powell T: Sodium current in single rat heart muscle cells. J Physiol 318: 479–500, 1981

    CAS  PubMed  Google Scholar 

  24. Howarth FC, Levi AJ: Internal free magnesium modulates the voltage dependence of contraction and Ca2+ transient in rabbit ventricular myocytes. Pflügers Arch 435: 687–698, 1998

    Article  CAS  PubMed  Google Scholar 

  25. Vornanen M, Shepherd N, Isenberg G: Tension-voltage relations of single myocytes reflect Ca release triggered by Na/Ca exchange at 35 degrees C but not 23 degrees C. Am J Physiol 267: C623–C632, 1994

    CAS  PubMed  Google Scholar 

  26. London B, Krueger JW: Contraction in voltage-clamped, internally perfused single heart cells. J Gen Physiol 88: 475–505, 1986

    Article  CAS  PubMed  Google Scholar 

  27. Hobai IA, Bates JA, Howarth FC, Levi AJ: Inhibition by external Cd of Na/Ca exchange and L-type Ca channel in rabbit ventricular myocytes. Am J Physiol 272: H2164–H2172, 1997

    CAS  PubMed  Google Scholar 

  28. Kimura J, Miyamae S, Noma A: Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol 384: 199–222, 1987

    CAS  PubMed  Google Scholar 

  29. Yu Z, Quamme GA, McNeill JH: Depressed [Ca2+]i responses to isoproterenol and cAMP in isolated cardiomyocytes from experimental diabetic rats. Am J Physiol 266: H2334–H2342, 1994

    CAS  PubMed  Google Scholar 

  30. Chattou S, Coulombe A, Diacono J, Le Grand B, John G, Feuvray D: Slowly inactivating component of sodium current in ventricular myocytes is decreased by diabetes and partially inhibited by known Na(+)-H(+) exchange blockers. J Mol Cell Cardiol 32: 1181–1192, 2000

    Article  CAS  PubMed  Google Scholar 

  31. Tamada A, Hattori Y, Houzen H, Yamada Y, Sakuma I, Kitabatake A, Kanno M: Effects of beta-adrenoceptor stimulation on contractility, [Ca2+]i, and Ca2+ current in diabetic rat cardiomyocytes. Am J Physiol 274: H1849–H1857, 1998

    CAS  PubMed  Google Scholar 

  32. Frampton JE, Harrison SM, Boyett MR, Orchard CH: Ca2+ and Na+ in rat myocytes showing different force-frequency relationships. Am J Physiol 261: C739–C750, 1991

    CAS  PubMed  Google Scholar 

  33. O'Neill SC, Eisner DA: A mechanism for the effects of caffeine on Ca2+ release during diastole and systole in isolated rat ventricular myocytes. J Physiol 430: 519–536, 1990

    PubMed  Google Scholar 

  34. Lagadic-Gossmann D, Buckler KJ, Le Prigent K, Feuvray D: Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 270: H1529–H1537, 1996

    CAS  PubMed  Google Scholar 

  35. Yu JZ, Quamme GA, McNeill JH: Altered [Ca2+]i mobilization in diabetic cardiomyocytes: Responses to caffeine, KCl, ouabain, and ATP. Diabetes Res Clin Pract 30: 9–20, 1995

    Article  CAS  PubMed  Google Scholar 

  36. Bers DM: Cardiac excitation-contraction coupling. Nature 415: 198–205, 2002

    Article  CAS  PubMed  Google Scholar 

  37. Bouchard RA, Clark RB, Giles WR: Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes. Action potential voltage-clamp measurements. Circ Res 76: 790–801, 1995

    CAS  PubMed  Google Scholar 

  38. Clark RB, Bouchard RA, Giles WR: Action potential duration modulates calcium influx, Na+-Ca2+exchange, and intracellular calcium release in rat ventricular myocytes. Ann N Y Acad Sci 779: 417–429, 1996

    CAS  PubMed  Google Scholar 

  39. Warley A: Changes in sodium concentration in cardiac myocytes from diabetic rats. Scanning Microsc 5: 239–244, 1991

    CAS  PubMed  Google Scholar 

  40. Lagadic-Gossmann D, Feuvray D: Intracellular sodium activity in papillary muscle from diabetic rat hearts. Exp Physiol 76: 147–149, 1991

    CAS  PubMed  Google Scholar 

  41. Ramasamy R, Payne JA, Whang J, Bergmann SR, Schaefer S: Protection of ischemic myocardium in diabetics by inhibition of electroneutral Na+-K+-2Cl cotransporter. Am J Physiol 281: H515–H522, 2001

    CAS  Google Scholar 

  42. Weber CR, Ginsburg KS, Bers DM: Cardiac submembrane [Na+] transients sensed by Na+-Ca2+ exchange current. Circ Res 92: 950–952, 2003

    Article  CAS  PubMed  Google Scholar 

  43. Bassani RA, Bassani JW, Bers DM: Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J Physiol 453: 591–608, 1992

    CAS  PubMed  Google Scholar 

  44. Choi HS, Eisner DA: The effects of inhibition of the sarcolemmal Ca-ATPase on systolic calcium fluxes and intracellular calcium concentration in rat ventricular myocytes. Pflügers Arch 437: 966–971, 1999

    Article  CAS  PubMed  Google Scholar 

  45. Negretti N, O'Neill SC, Eisner DA: The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res 27: 1826–1830, 1993

    CAS  PubMed  Google Scholar 

  46. Bassani JW, Bassani RA, Bers DM: Twitch-dependent SR Ca accumulation and release in rabbit ventricular myocytes. Am J Physiol 265: C533–C540, 1993

    CAS  PubMed  Google Scholar 

  47. Bouchard RA, Bose D: Influence of experimental diabetes on sarcoplasmic reticulum function in rat ventricular muscle. Am J Physiol 260: H341–H354, 1991

    CAS  PubMed  Google Scholar 

  48. Zhong Y, Ahmed S, Grupp IL, Matlib MA: Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol 281: H1137–H1147, 2001

    CAS  Google Scholar 

  49. Kim HW, Ch YS, Lee HR, Park SY, Kim YH: Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Life Sci 70: 367–379, 2001

    Article  CAS  PubMed  Google Scholar 

  50. Teshima Y, Takahashi N, Saikawa T, Hara M, Yasunaga S, Hidaka S, Sakata T: Diminished expression of sarcoplasmic reticulum Ca2+-ATPase and ryanodine sensitive Ca2+ channel mRNA in streptozotocin-induced diabetic rat heart. J Mol Cell Cardiol 32: 655–664, 2000

    CAS  PubMed  Google Scholar 

  51. Weisser-Thomas J, Piacentino V III, Gaughan JP, Margulies K, Houser SR: Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes. Cardiovasc Res 57: 974–985, 2003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracken, N., Woodall, A., Howarth, F. et al. Voltage-dependence of contraction in streptozotocin-induced diabetic myocytes. Mol Cell Biochem 261, 235–243 (2004). https://doi.org/10.1023/B:MCBI.0000028761.61216.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000028761.61216.5e

Navigation