Skip to main content
Log in

Role of calpains in diabetes mellitus: A mini review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is characterized by defects in haepatic glucose production, insulin action and insulin secretion, which can also lead to a variety of secondary disorders. The disease can lead to death without treatment and it has been predicted that T2DM will affect 215 million people world-wide by 2010. T2DM is a multifactorial condition whose precise genetic causes and biochemical defects have not been fully elucidated but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of non-coding polymorphisms in CAPN10 to be functionally associated with T2DM whilst the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. The presence of both calpain 10 and its mRNA have been demonstrated in tissues from several mammalian species whilst calpain 10 appears to be associated with pathways involved in glucose metabolism, insulin secretion and insulin action. It appears that other calpains may also participate in these pathways and here we present an overview of recent studies on calpains and their putative role in T2DM. (Mol Cell Biochem 261: 161–167, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Redondo MJ, Eisenbarth GS: Genetic control of autoimmunity in Type I diabetes and associated disorders. Diabetologia 45: 605–622, 2002

    Article  CAS  PubMed  Google Scholar 

  2. Harris MI: Definition and classification of diabetes mellitus. In: D. LeRoith, S.I. Taylor, J.M. Olefsk (eds). Diabetes mellitus: A fundamental and clinical text. Lippincott, Williams and Wilkins, Philadelphia, 2000, pp 326–335

    Google Scholar 

  3. Busch CP, Hegele RA: Genetic determinants of type 2 diabetes mellitus. Clin Genet 60: 243–254, 2001

    Article  CAS  PubMed  Google Scholar 

  4. Metzger BE, Coustan DR: Summary and recommendations of the Fourth International Workshop: Conference on gestational diabetes mellitus. The organizing committee. Diabetes Care 21: B161–B167, 1998

    PubMed  Google Scholar 

  5. Gloyn AL: The search for type 2 diabetes genes. Ageing Res Rev 2: 111–127. 2003

    CAS  PubMed  Google Scholar 

  6. Owen K, Hattersley AT: Maturity-onset diabetes of the young: From clinical description to molecular genetic characterization. Baillires Best Pract Res Clin Endocrinol Metab 15: 309–323, 2001

    CAS  Google Scholar 

  7. Steiner DF, Tager HS, Namjo K, Chan SJ, Rubenstein JH. Familial syndromes of hyperproinsulinemia with mild diabetes. In: C.R. Scriver, A.L. Beadet, W.S. Sly, D. Valle (eds). The metabolic and molecular basis of inherited disease. McGraw Hill, New York, 1995, pp 897–904

    Google Scholar 

  8. Taylor SI: Diabetes mellitus. In: C.R. Scriver, A.L. Beadet, W.S. Sly, D. Valle (eds). The metabolic and molecular basis of inherited disease. McGraw Hill, New York, 1995, pp 843–896

    Google Scholar 

  9. Nishigori H, Yamada S, Kohama T, Tomura H, Sho K, Horikawa Y, Bell GI, Takeuch T, Takeda J: Frameshift mutation, A263fsinsGG, in the hepatocyte nuclear factor-1 beta gene associated with diabetes and renal dysfunction. Diabetes 47: 1354–1355, 1998

    CAS  PubMed  Google Scholar 

  10. Stoffers DA, Ferrer J, Clarke WL, Habener JF: Early-onset type-II mellitus (MODY4) linked to IPF1. Nat Genet 17: 138–139, 1997

    CAS  PubMed  Google Scholar 

  11. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15: 106–110, 1997

    Article  CAS  PubMed  Google Scholar 

  12. Malecki MT, Jhal US, Antonellis A, Fields L, Doria A, Orban T, Saad M, Warram JH, Montminy M, Krolewski AS: Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23: 323–328, 1999

    CAS  PubMed  Google Scholar 

  13. Adorini l, Gregori S, Harrison LC: Understanding autoimmune diabetes: Insights from mouse models. Trends Mol Med 8: 31–38, 2002

    Article  CAS  PubMed  Google Scholar 

  14. Bach JF: Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 15: 516–542, 1994

    Article  CAS  PubMed  Google Scholar 

  15. Castano L, Eisenbarth GS: Type-I diabetes: A chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol 8: 647–679, 1990

    Article  CAS  PubMed  Google Scholar 

  16. Herr M, Dudbridge F, Zavattari P, Cucca F, Guja C, March R, Campbell RD, Barnett AH, Bain SC, Todd JA, Koeleman BP: Evaluation of fine mapping strategies for a multifactorial disease locus: Systematic linkage and association analysis of IDDM1 in the HLA region on chromosome 6p21. Hum Mol Genet 9: 1291–1301, 2000

    Article  CAS  PubMed  Google Scholar 

  17. Concannon P, Gogolin-Ewens KJ, Hinds DA, Wapelhorst B, Morrison VA, Stirling B, Mitra M, Farmer J, Williams SR, Cox NJ, Bell GI, Risch N, Spielman RS: A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nat Genet 19: 292–296, 1998

    Article  CAS  PubMed  Google Scholar 

  18. Amos AF, McCarty DJ, Zimmer P: The rising global burden of type 2 diabetes and its complications: Estimates and projections to the year 2000. Diabetic Med 14: S7–S85, 1997

    Article  Google Scholar 

  19. Arner P: The adipocyte in insulin resistance: Key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab 14: 137–145, 2003

    CAS  PubMed  Google Scholar 

  20. Petersen KF, Shulman GI: Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol 90: 11G–18G, 2002

    Article  CAS  PubMed  Google Scholar 

  21. Bailey CJ: Potential new treatments for type 2 diabetes. Trends Pharmacol Sci 21: 259–265, 2000

    Article  CAS  PubMed  Google Scholar 

  22. Bailey CJ: Insulin resistance and antidiabetic drugs. Biochem Pharmacol 58: 1511–1520, 1999

    Article  CAS  PubMed  Google Scholar 

  23. Sacks DB, McDonald JM: The pathogenesis of type II diabetes mellitus: A polygenic disease. Am J Clin Pathol 105: 149–156, 1996

    CAS  PubMed  Google Scholar 

  24. Scheen AJ, Luyckx FH: Obesity and liver disease. Best Pract Res Clin Endocrinol Metab 16: 703–716, 2002

    Article  CAS  PubMed  Google Scholar 

  25. Balen A, Rajkowha M: Polycystic ovary syndrome?—a systemic disorder? Best Pract Res Clin Obstet Gynaecol 17: 263–274, 2003

    Article  PubMed  Google Scholar 

  26. Naoumovaa RP, Betteridge DJ: A new drug target for treatment of dyslipidaemia associated with type 2 diabetes and the metabolic syndrome? Lancet 359: 2215–2216, 2002

    Google Scholar 

  27. Conlin PR: Efficacy and safety of angiotensin receptor blockers: A review of losartan in essential hypertension. Curr Ther Res 62: 79–91, 2001

    Article  CAS  Google Scholar 

  28. Plutzky J, Viberti G, Haffner S: Atherosclerosis in type 2 diabetes mellitus and insulin resistance: Mechanistic links and therapeutic targets. J Diabetes Complications 16: 401–415, 2002

    Article  PubMed  Google Scholar 

  29. Raza JA, Movahed A: Current concepts of cardiovascular diseases in diabetes mellitus. Int J Cardiol 89: 123–134, 2003

    Google Scholar 

  30. Zanella M-T, Ribeiro AB: The role of angiotensin II antagonism in type 2 diabetes mellitus: A review of renoprotection studies. Clin Ther 24: 1019–1034, 2002

    Article  CAS  PubMed  Google Scholar 

  31. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW: The Penn State Retina Research Group: Diabetic retinopathy: More than meets the eye. Surv Ophthalmol 47: S253–S262, 2002

    PubMed  Google Scholar 

  32. Coppini DV, Bowtell PA, Weng C, Young PJ, Sonksen PH: Showing neuropathy is related to increased mortality in diabetic patients—a survival analysis using an accelerated failure time model. J Clin Epidemiol 53: 519–523, 2000

    Article  CAS  PubMed  Google Scholar 

  33. Goll DE, Thompson VF, Li HQ, Wei W, Cong JY: The calpain system. Physiol Rev 83: 731–801, 2003

    CAS  PubMed  Google Scholar 

  34. Perrin BJ, Huttenlocher A: Calpain. Int J Biochem Cell Biol 34: 722–725, 2002

    Article  CAS  PubMed  Google Scholar 

  35. Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K, Irie A, Sorimachi H, Bourenkow G, Bartunik H, Suzuki K, Bode W: The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci USA 97: 588–592, 2000

    Article  CAS  PubMed  Google Scholar 

  36. Hosfield CM, Elce JS, Davies PL, Jia ZC: Crystal structure of calpain reveals the structural basis for Ca2+ dependent protease activity and a novel mode of enzyme activation. EMBO J 18: 6880–6889, 1999

    Article  CAS  PubMed  Google Scholar 

  37. Reverter D, Braun M, Fernandez-Catalan C, Strobl S, Sorimachi H, Bode W: Flexibility analysis and structure comparison of two crystal forms of calcium-free human m-calpain. J Biol Chem 383: 1415–1422, 2002

    CAS  Google Scholar 

  38. Reverter D, Sorimachi H, Bode W: The structure of calcium-free human m-calpain: Implications for calcium activation and function. Trends Cardiovasc Med 11: 222–229, 2001

    Article  CAS  PubMed  Google Scholar 

  39. Reverter D, Strobl S, Fernandez-Catalan C, Sorimachi H, Suzuki K, Bode W: Structural basis for possible calcium-induced activation mechanisms of calpains. Biol Chem 382: 753–766, 2001

    Article  CAS  PubMed  Google Scholar 

  40. Farkas A, Tompa P, Friedrich P: Revisiting ubiquity and tissue specificity of human calpains. Biol Chem 384: 945–949, 2003

    Article  CAS  PubMed  Google Scholar 

  41. Huang YH, Wang KKW: The calpain family and human disease. Trends Mol Med 7: 355–362, 2001

    Article  CAS  PubMed  Google Scholar 

  42. Sorimachi H, Suzuki K: The structure of calpain. J Biochem 129: 653–664, 2001

    CAS  PubMed  Google Scholar 

  43. Carafoli E, Molinari M: Calpain: A protease in search of a function? Biochem Biophys Res Commun 247: 193–203, 1998

    Article  CAS  PubMed  Google Scholar 

  44. Sato K, Kawashima S: Calpain function in the modulation of signal transduction molecules. Biol Chem 382: 743–751, 2001

    Article  CAS  PubMed  Google Scholar 

  45. Yajima Y, Kawashima S: Calpain function in the differentiation of mesenchymal stem cells. Biol Chem 383: 757–764, 2002

    Article  CAS  PubMed  Google Scholar 

  46. Rami A: Ischemic neuronal death in the rat hippocampus: The calpain-calpastatin-caspase hypothesis. Neurobiol Dis 13: 75–88, 2003

    Article  CAS  PubMed  Google Scholar 

  47. Yamashima T: Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 62: 273–295, 2000

    Article  CAS  PubMed  Google Scholar 

  48. Sazontova TG, Matskevich AA, Arkhipenko YV: Pathophysiology review article calpains: Physiol Pathophysiol Signif 6: 91–102, 1999

    CAS  Google Scholar 

  49. Gordon ES, Hoffman EP: The ABC's of limb-girdle muscular dystrophy: Alpha-sarcoglycanopathy, Bethlem myopathy, calpainopathy and more. Curr Opin Neurol 14: 567–573, 2001

    Article  CAS  PubMed  Google Scholar 

  50. Richard I, Roudaut C, Saenz A, Pogue R, Grimbergen JEMA, Anderson LVB, Beley C, Cobo AM, de Diego C, Eymard B, Gallano P, Ginjaar HB, Lasa A, Pollitt C, Topaloglu H, Urtizberea JA, de Visser M, van der Kooi A, Bushby K, Bakker E, de Munain AL, Fardeau M, Beckmann JS: Calpainopathy—a survey of mutations and polymorphisms. Am J Hum Genet 64: 1524–1540, 1999

    Article  CAS  PubMed  Google Scholar 

  51. Vanderklish PW, Bahr BA: The pathogenic activation of calpain: A marker and mediator of cellular toxicity and disease states. Int J Exp Path 81: 323–339, 2000

    Article  CAS  Google Scholar 

  52. Nixon RA: A “protease activation cascade” in the pathogenesis of Alzheimer's disease. Ann NY Acad Sci 924: 117–131, 2000

    CAS  PubMed  Google Scholar 

  53. Azuma M, Fukiage C, David LL, Shearer TR: Activation of calpain in lens: A Review and proposed mechanism. Exp Eye Res 64: 29–538, 1997

    Google Scholar 

  54. Horikawa Y, Oda N, Cox NJ, Li XQ, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PEH, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze T, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI: Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2: 163–175, 2000

    Google Scholar 

  55. Hanis CL, Boerwinkle E, Chakraborty R, Ellsworth DL, Concannon P, Stirling B, Morrison VA, Wapelhorst B, Spielman RS, GogolinEwens KJ, Shephard JM, Williams SR, Risch N, Hinds D, Iwasaki N, Ogata M, Omori Y, Petzold C, Rietzsch H, Schroder HE, Schulze J, Cox NJ, Menzel S, Boriraj VV, Chen X, Lim LR, Lindner T, Mereu LE, Wang YQ, Xiang K, Yamagata K, Yang Y, Bell GI: A genome-wide search for human non-insulin dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 13: 161–166, 1996

    Article  CAS  PubMed  Google Scholar 

  56. Cox NJ, Frigge M, Nicolae DL, Concannon P, Hanis CL, Bell GI, Kong A: Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. Nat Genet 21: 213–215, 1999

    Article  CAS  PubMed  Google Scholar 

  57. Lynn S, Evans JC, White C, Frayling TM, Hattersley AT, Turnbull DM, Horikawa Y, Cox NJ, Bell GI, Walker M: Variation in the calpain-10 gene affects blood glucose levels in the British population. Diabetes 51: 247–250, 2002

    CAS  PubMed  Google Scholar 

  58. Garant MJ, Kao WHL, Brancati F, Coresh J, Rami TM, Hanis CL, Boerwinkle E, Shuldiner AR: SNP43 of CAPN10 and the risk of type 2 diabetes in African-Americans—the atherosclerosis risk in communities study. Diabetes 51: 231–237, 2002

    CAS  PubMed  Google Scholar 

  59. Tsai HJ, Sun GY, Weeks DE, Kaushal R, Wolujewicz M, McGarvey ST, Tufa J, Viali S, Deka R: Type 2 diabetes and three Calpain-10 gene polymorphisms in Samoans: No evidence of association. Am J Hum Genet 69: 1236–1244, 2001

    Article  CAS  PubMed  Google Scholar 

  60. Hegele RA, Harris SB, Zinman B, Hanley AJG, Cao H: Absence of association of type 2 diabetes with CAPN10 and PC-1 polymorphisms in Oji-Cree. Diabetes Care 24: 1498–1499, 2001

    CAS  PubMed  Google Scholar 

  61. Elbein SC, Chu W, Ren QF, Hemphill C, Schay J, Cox NJ, Hanis CL, Hasstedt SJ: Role of calpain-10 gene variants in familial type 2 diabetes in Caucasians. J Clin Enodocr Metab 87: 650–654, 2002

    CAS  Google Scholar 

  62. Daimon M, Oizumi T, Saitoh T, Kameda W, Yamaguchi H, Ohnuma H, Igarashi M, Manaka H, Kato T: Calpain 10 gene polymorphisms are related, not to type 2 diabetes, but to increased serum cholesterol in Japanese. Diabetes Res Clin Prac 56: 147–152, 2002

    Article  CAS  Google Scholar 

  63. Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, Levy JC, O'Rahilly S, Rao PVS, Bennett AJ, Jones EC, Menzel S, Prestwich P, Simecek N, Wishart M, Dhillon R, Fletcher C, Millward A, Demaine A, Wilkin T, Horikawa Y, Cox NJ, Bell GI, Ellard S, McCarthy MI, Hattersley AT: Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. Am J Hum Genet 69: 544–552, 2001

    Article  CAS  PubMed  Google Scholar 

  64. Malecki MT, Moczulski DK, Klupa T, Wanic K, Cyganek K, Frey J, Sieradzki J: Homozygous combination of calpain 10 gene haplotypes is associated with type 2 diabetes mellitus in a Polish population. Eur J Endocrinol 146: 695–699, 2002

    Article  PubMed  Google Scholar 

  65. Cassell PG, Jackson AE, North BV, Evans JC, Syndercombe-Court D, Phillips C, Ramachandran A, Snehalatha C, Gelding SV, Vijayaravaghan S, Curtis D, Hitman GA: Haplotype combinations of calpain 10 gene polymorphisms associate with increased risk of impaired glucose tolerance and type 2 diabetes in South Indians. Diabetes 51: 1622–1628, 2002

    CAS  PubMed  Google Scholar 

  66. Rasmussen SK, Urhammer SA, Berglund L, Jensen JN, Hansen L, Echwald SM, Borch-Johnsen K, Horikawa Y, Mashima H, Lithell H, Cox NJ, Hansen T, Bell GI, Pedersen O: Variants within the calpain-10 gene on chromosome 2q37 (NIDDM1) and relationships to type 2 diabetes, insulin, and impaired acute insulin secretion among Scandinavian Caucasians. Diabetes 51: 3561–3567, 2002

    CAS  PubMed  Google Scholar 

  67. Horikawa Y, Oda N, Yu L, Imamura S, Fujiwara K, Makino M, Seino Y, Itoh M, Takeda J: Genetic variations in calpain-10 gene are not a major factor in the occurrence of type 2 diabetes in Japanese. J Clin Endocr Metab 88: 244–247, 2003

    Article  CAS  PubMed  Google Scholar 

  68. Hoffstedt J, Naslund E, Arner P: Calpain-10 gene polymorphism is associated with Reduced β3-Adrenoceptor function in human fat cells. J Clin Endocr Metab 87: 3362–3367, 2002

    Article  CAS  PubMed  Google Scholar 

  69. Gonzalez A, Abril E, Roca A, Aragon MJ, Figueroa MJ, Velarde P, Royo JL, Real LM, Ruiz A: CAPN10 alleles are associated with polycystic ovary syndrome. J Clin Endocrinol Metab 87: 3971–3976

  70. Sugimoto K, Katsuya T, Ishikawa K, Iwashima Y, Yamamoto K, Fu Y, Matsuo A, Motone M, Rakugi H, Ogihara T: UCSNP-43 G/A polymorphism of calpain-10 gene is associated with hypertension and dyslipidemia in Japanese population. Am J Hypertens 16: A82, 2003

    Article  Google Scholar 

  71. Cox NJ: Challenges in identifying genetic variation affecting susceptibility to type 2 diabetes: Examples from studies on the calpain 10 gene. Hum Mol Gen 10: 2301–2305, 2001

    CAS  PubMed  Google Scholar 

  72. Baier LJ, Permana PA, Yang XL, Pratley RE, Hanson RL, Shen GQ, Mott D, Knowler WC, Cox NJ, Horikawa Y, Oda N, Bell GI, Bogardus C: A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J Clin Invest 106: R69–R73, 2000

    CAS  PubMed  Google Scholar 

  73. Yang XL, Pratley RE, Baier LJ, Horikawa Y, Bell GI, Bogardus C, Permana PA: Reduced skeletal muscle calpain-10 transcript level is due to a cumulative decrease in major isoforms. Mol Genet Metabol 73: 111–113, 2001

    CAS  Google Scholar 

  74. Ma H, Fukiage C, Kim YH, Duncan MK, Reed NA, Shih M, Azuma M, Shearer TR: Characterization and expression of calpain 10—a novel ubiquitous calpain with nuclear localization. J Biol Chem 276: 28525–28531, 2001

    CAS  PubMed  Google Scholar 

  75. Uitterlinden AG, Burger H, Huang O, Yue F, McGuigan FEA, Grant SFA, Hofman A, van Leeuwen JTPM, Pols HAP, Ralston SH: Relation of alleles of the collagen type I 1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 338: 1016–1021, 1998

    Article  CAS  PubMed  Google Scholar 

  76. Sun L, Cox NJ, McPeek MS: A statistical method for identification of polymorphisms that explain a linkage result. Am Hum Genet 70: 399–411, 2002

    Google Scholar 

  77. Braun C, Enge M, Theisinger B, Welter C, Seifert M: CAPN 8: Isolation of a new mouse calpain-isoenzyme. Biochem Biophys Res Commun 260: 671–675, 1999

    Article  CAS  PubMed  Google Scholar 

  78. Bell GI, Polonsky KS: Diabetes melittus and genetically programmed defects in beta-cell function. Nature 414: 788–791, 2001

    Article  CAS  PubMed  Google Scholar 

  79. Orho-Melander M, Klannemark M, Svensson MK, Ridderstrale M, Lindgren CM, Groop L: Variants in the calpain-10 gene predispose to insulin resistance and elevated free fatty acid levels. Diabetes 51: 2658–2664, 2002

    CAS  PubMed  Google Scholar 

  80. Stumvoll M, Wahl HG, Machicao F, Haring H: Insulin sensitivity of glucose disposal and lipolysis: No influence of common genetic variants in IRS-1 and CAPN10. Diabetologia 45: 651–656, 2002

    CAS  PubMed  Google Scholar 

  81. Hoffstedt J, Ryden M, Lofgren P, Orho-Melander M, Groop L, Arner P: Polymorphism in the Calpain 10 gene influences glucose metabolism in human fat cells. Diabetologia 45: 276–282, 2002

    CAS  PubMed  Google Scholar 

  82. Patel YM, Lane MD: Role of calpain in adipocyte differentiation. Proc Natl Acad Sci 96: 1279–1284, 1999

    CAS  PubMed  Google Scholar 

  83. Smith LK, Rice MR, Garner WG: The insulin-induced down regulation of IRS-1 in 3T3-L1 adipocytes is mediated by a calcium dependent thiol protease. Mol Cell Endocrinol 122: 81–92, 1996

    CAS  PubMed  Google Scholar 

  84. Zhang H, Hoff H, Sell C: Downregulation of IRS-1 protein in thapsigargin-treated human prostate epithelial cells. Exp Cell Res, 2003

  85. Sreenan SK, Zhou YP, Otani K, Hansen PA, Currie KPM, Pan CY, Lee JP, Ostrega DM, Pugh W, Horikawa Y, Cox NJ, Hanis CL, Burant CF, Fox AP, Bell GI, Polonsky KS: Calpains play a role in insulin secretion and action. Diabetes, 2013–2020, 2001

  86. Schulman GI: Cellular mechanisms of insulin resistance. J Clin Invest 106: 171–176, 2000

    Google Scholar 

  87. Zhou YP, Sreenan S, Pan CY, Currie KPM, Bindokas VP, Horikawa Y, Lee JP, Ostrega D, Ahmed N, Baldwin AC, Cox NJ, Fox AP, Miller RJ, Bell GI, Polonsky KS: A48-hour exposure of pancreatic islets to calpain inhibitors impairs mitochondrial fuel metabolism and the exocytosis of insulin. Metab Clin Exp 52: 528–534, 2003

    CAS  PubMed  Google Scholar 

  88. Walder K, McMillan J, Lapsys N, Kriketos A, Trevaskis J, Civitarese A, Southon A, Zimmet P, Collier G: Calpain 3 gene expression in skeletal muscle is associated with body fat content and measures of insulin resistance. Int J Obesity 26: 442–449, 2002

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, F., Chatfield, L., Singh, J. et al. Role of calpains in diabetes mellitus: A mini review. Mol Cell Biochem 261, 161–167 (2004). https://doi.org/10.1023/B:MCBI.0000028751.10560.dc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000028751.10560.dc

Navigation