Skip to main content
Log in

Differential effects of vanadium, tungsten and molybdenum on inhibition of glucose formation in renal tubules and hepatocytes of control and diabetic rabbits: Beneficial action of melatonin and N-acetylcysteine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Effect of vanadyl acetylacetonate (VAc), tungstate and molybdate on gluconeogenesis has been studied in isolated hepatocytes and kidney-cortex tubules. In renal tubules of control and alloxan-diabetic animals, the rank order of the metal-compounds-induced (i) inhibition of glucose formation from alanine + glycerol + octanoate or aspartate + glycerol + octanoate, (ii) decrease in the mitochondrial membrane potential (ΔΨm), (iii) increase in the hydroxyl free radicals (HFR) generation and (iv) decline in glucose-6-phosphatase activity was the following: VAc > tungstate > molybdate. Moreover, in contrast to VAc, both tungstate and molybdate at 100 μM concentration did not practically decrease glucose production in hepatocytes isolated from diabetic rabbits, and significantly increased the rate of lactate formation in renal tubules. N-acetylcysteine at 2 mM concentration partially attenuated vanadium-induced alterations in glucose formation, ΔΨm and the cellular glutathione redox state, whereas 0.1 mM melatonin did not abolish vanadium-induced changes in gluconeogenesis despite attenuation of vanadium effects on HFR formation and ΔΨm decline. However, similarly to control rabbits, following 6 days of intraperitoneal administration of both VAc (1.275 mg V/kg body weight daily) and melatonin (1 mg/kg body weight daily) to alloxan-diabetic animals, vanadium-induced elevated serum creatinine and urea levels were decreased, indicating the beneficial effect of melatonin on diabetes- and vanadium-induced nephrotoxicity in rabbits. As serum glucose levels were also significantly diminished by vanadium + melatonin treatment of diabetic animals, the combination therapy of vanadium compounds and melatonin needs a careful evaluation. (Mol Cell Biochem 261: 9–21, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryla J, Kiersztan A, Jagielski AK: Promising novel approaches to diabetes mellitus therapy: Pharmacological, molecular and cellular insights. Eur Citizen's Qual Life 1: 137–161, 2003

    Google Scholar 

  2. Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM: Effects of vanadium complexes with organic ligands on glucose metabolism: A comparison study in diabetic rats. Br J Pharmacol 126: 467–477, 1999

    Article  CAS  PubMed  Google Scholar 

  3. Crans DC: Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. J Inorg Biochem 80: 123–131, 2000

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Elberg G, Crans DC, Shechter Y: Evidence for the distinct vanadyl (+4)-dependent activating system for manifesting insulin-like effects. Biochemistry 35: 8314–8318, 1996

    CAS  PubMed  Google Scholar 

  5. Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E: Treatment of diabetes with vanadium salts: General overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev 17: 55–66, 2001

    Article  CAS  PubMed  Google Scholar 

  6. Cam MC, Brownsey RW, McNeill JH: Mechanisms of vanadium action: Insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 78: 829–847, 2000

    Article  CAS  PubMed  Google Scholar 

  7. Reul BA, Becker DJ, Ongemba LN, Bailey CJ, Henquin JC, Brichard SM: Improvement of glucose homeostasis and hepatic insulin resistance in ob/ob mice given oral molybdate. J Endocrinol 155: 55–64, 1997

    Article  CAS  PubMed  Google Scholar 

  8. Kiersztan A, Modzelewska A, Jarzyna R, Jagielska E, Bryla J: Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem Pharmacol 63: 1371–1382, 2002

    Article  CAS  PubMed  Google Scholar 

  9. Domingo JL, Gomez M, Sanchez DJ, Llobet JM, Keen CL: Toxicology of vanadium compounds in diabetic rats: The action of chelating agents on vanadium accumulation. Mol Cell Biochem 153: 233–240, 1995

    Article  CAS  PubMed  Google Scholar 

  10. al-Bayati MA, Giri SN, Raabe OG: Time and dose-response study of the effects of vanadate in rats: Changes in blood cells, serum enzymes, protein, cholesterol, glucose, calcium, and inorganic phosphate. J Environ Pathol Toxicol Oncol 10: 206–213, 1990

    CAS  PubMed  Google Scholar 

  11. Yao J, Battell ML, McNeill JH: Acute and chronic response to vanadium following two methods of streptozotocin-diabetes induction. Can J Physiol Pharmacol 75: 83–90, 1997

    Article  CAS  PubMed  Google Scholar 

  12. Barbera A, Gomis RR, Prats N, Rodriguez-Gil JE, Domingo M, Gomis R, Guinovart JJ: Tungstate is an effective antidiabetic agent in streptozotocin-induced diabetic rats: A long-term study. Diabetologia 44: 507–513, 2001

    CAS  PubMed  Google Scholar 

  13. Stumvoll M, Meyer C, Mitrakou A, Nadkarni V, Gerich JE: Renal glucose production and utilization: New aspects in humans. Diabetologia 40: 749–757, 1997

    Article  CAS  PubMed  Google Scholar 

  14. Adrogue HJ: Glucose homeostasis and the kidney. Kidney Int 42: 1266–1282, 1992

    CAS  PubMed  Google Scholar 

  15. Jagielski AK, Wohner D, Lietz T, Jarzyna R, Derlacz RA, Winiarska K, Bryla J: Purinergic regulation of glucose and glutamine synthesis in isolated rabbit kidney-cortex tubules. Arch Biochem Biophys 404: 186–196, 2002

    Article  CAS  PubMed  Google Scholar 

  16. Usatenko MS: Hormonal regulation of phosphoenolpyruvate carboxykinase activity in liver and kidney of adult animals and formation of this enzyme in developing rabbit liver. Biochem Med 3: 298–310, 1970

    Article  CAS  PubMed  Google Scholar 

  17. Jarzyna R, Kiersztan A, Lisowa O, Bryla J: The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur J Pharmacol 428: 381–388, 2001

    Article  CAS  PubMed  Google Scholar 

  18. Harris EJ, Tate C, Manger JR, Bangham JA: The effects of colloids on the appearance and substrate permeability of rat liver mitochondria. J Bioenerg 2: 221–232, 1971

    CAS  PubMed  Google Scholar 

  19. Bryla J, Harris EJ, Plumb JA: The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP content. FEBS Lett 80: 443–448, 1977

    Article  CAS  PubMed  Google Scholar 

  20. Winiarska K, Drozak J, Wegrzynowicz M, Jagielski AK, Bryla J: Relationship between gluconeogenesis and glutathione redox state in rabbit kidney-cortex tubules. Metabolism 52: 739–746, 2003

    Article  CAS  PubMed  Google Scholar 

  21. Zaleski J, Zablocki K, Bryla J: Short-term effect of glucagon on gluconeogenesis and pyruvate kinase in rabbit hepatocytes. Int J Biochem 14: 733–739, 1982

    Article  CAS  PubMed  Google Scholar 

  22. Reers M, Smith TW, Chen LB: J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30: 4480–4486, 1991

    Article  CAS  PubMed  Google Scholar 

  23. Cheng FC, Jen JF, Tsai TH: Hydroxyl radical in living systems and its separation methods. J Chromatogr B Analyt Technol Biomed Life Sci 781: 481–496, 2002

    CAS  PubMed  Google Scholar 

  24. Gierow P, Jergil B: Spectrophotometric method for glucose-6-phosphate phosphatase. Methods Enzymol 89: 44–47, 1982

    CAS  PubMed  Google Scholar 

  25. Bergmeyer HU (ed): Methods in Enzymatic Analysis. Verlag Chemie GmbH, Weinheim-Basel, 1983

    Google Scholar 

  26. Ridnour LA, Winters RA, Ercal N, Spitz DR: Measurement of glutathione, glutathione disulfide, and other thiols in mammalian cell and tissue homogenates using high-performance liquid chromatography separation of N-(1-pyrenyl)maleimide derivatives. Methods Enzymol 299: 258–267, 1999

    CAS  PubMed  Google Scholar 

  27. da Fonseca-Wollheim F, Heinze KG: The influence of pCO2 on the rate of ammonia formation in blood. Eur J Clin Chem Clin Biochem 30: 867–869, 1992

    CAS  PubMed  Google Scholar 

  28. Michalik M, Biedermann I, Lietz T, Bryla J: Recovery of impaired gluconeogenesis in kidney-cortex tubules of gentamicin-treated rabbits. Pharmacol Res 23: 259–269, 1991

    Article  CAS  PubMed  Google Scholar 

  29. Layne E: Spectrophotometric and turbidimetric methods for measuring protein. In: S.P. Colowick, N.O. Kaplan (eds). Methods in Enzymology. Academic Press, New York, 1957, pp 447–454

    Google Scholar 

  30. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Article  CAS  PubMed  Google Scholar 

  31. Lietz T, Rybka J, Bryla J: Fatty acids and glycerol or lactate are required to induce gluconeogenesis from alanine in isolated rabbit renal cortical tubules. Amino Acids 16: 41–58, 1999

    Article  CAS  PubMed  Google Scholar 

  32. Lietz T, Winiarska K, Bryla J: Ketone bodies activate gluconeogenesis in isolated rabbit renal cortical tubules incubated in the presence of amino acids and glycerol. Acta Biochim Pol 44: 323–331, 1997

    CAS  PubMed  Google Scholar 

  33. Parker JC: Glucose-6-phosphate translocase as a target for the design of antidiabetic agents. Drugs Future 26: 687–693, 2001

    Article  CAS  Google Scholar 

  34. Gulcin I, Buyukokuroglu ME, Kufrevioglu OI: Metal chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res 34: 278–281, 2003

    CAS  PubMed  Google Scholar 

  35. De Vries N, De Flora: N-acetyl-l-cysteine. J Cell Biochem (Suppl 17F): 270–277, 1993

    Google Scholar 

  36. Chen Q, Chai YC, Mazumder S, Jiang C, Macklis RM, Chisolm GM, Almasan A: The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ 10: 323–334, 2003

    CAS  PubMed  Google Scholar 

  37. Chen HW, Chien CT, Yu SL, Lee YT, Chen WJ: Cyclosporine A regulate oxidative stress-induced apoptosis in cardiomyocytes: Mechanisms via ROS generation, iNOS and Hsp70. Br J Pharmacol 137: 771–781, 2002

    CAS  PubMed  Google Scholar 

  38. Tunez I, del Carmen Munoz M, Feijoo M, Valdelvira ME, Rafael Munoz-Castaneda J, Montilla P: Melatonin effect on renal oxidative stress under constant light exposure. Cell Biochem Funct 21: 35–40, 2003

    CAS  PubMed  Google Scholar 

  39. Panneerselvam RS, Govindaswamy S: Effect of sodium molybdate on carbohydrate metabolizing enzymes in alloxan-induced diabetic rats. J Nutr Biochem 13: 21–26, 2002

    CAS  PubMed  Google Scholar 

  40. Ozcelikay AT, Becker DJ, Ongemba LN, Pottier AM, Henquin JC, Brichard SM: Improvement of glucose and lipid metabolism in diabetic rats treated with molybdate. Am J Physiol 270: E344–E352, 1996

    CAS  PubMed  Google Scholar 

  41. Fantus IG, Tsiani E: Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects. Mol Cell Biochem 182: 109–119, 1998

    Article  CAS  PubMed  Google Scholar 

  42. Sekar N, Li J, Shechter Y: Vanadium salts as insulin substitutes: Mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit Rev Biochem Mol Biol 31: 339–359, 1996

    CAS  PubMed  Google Scholar 

  43. Kiersztan A, Jarzyna R, Bryla J: Inhibitory effect of vanadium compounds on glutamate dehydrogenase activity in mitochondria and hepatocytes isolated from rabbit liver. Pharmacol Toxicol 82: 167–172, 1998

    CAS  PubMed  Google Scholar 

  44. Mosseri R, Waner T, Shefi M, Shafrir E, Meyerovitch J: Gluconeogenesis in non-obese diabetic (NOD) mice: In vivo effects of vandadate treatment on hepatic glucose-6-phoshatase and phosphoenolpyruvate carboxykinase. Metabolism 49: 321–325, 2000

    Article  CAS  PubMed  Google Scholar 

  45. Faure P, Rossini E, Wiernsperger N, Richard MJ, Favier A, Halimi S: An insulin sensitizer improves the free radical defense system potential and insulin sensitivity in high fructose-fed rats. Diabetes 48: 353–357, 1999

    CAS  PubMed  Google Scholar 

  46. Oster MH, Llobet JM, Domingo JL, German JB, Keen CL: Vanadium treatment of diabetic Sprague-Dawley rats results in tissue vanadium accumulation and pro-oxidant effects. Toxicology 83: 115–130, 1993

    Article  CAS  PubMed  Google Scholar 

  47. Russanov E, Zaporowska H, Ivancheva E, Kirkova M, Konstantinova S: Lipid peroxidation and antioxidant enzymes in vanadate-treated rats. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 107: 415–421, 1994

    CAS  PubMed  Google Scholar 

  48. Cortizo AM, Bruzzone L, Molinuevo S, Etcheverry SB: A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR 106 osteosarcoma cell lines. Toxicology 147: 89–99, 2000

    Article  CAS  PubMed  Google Scholar 

  49. Aureliano M, Joaquim N, Sousa A, Martins H, Coucelo JM: Oxidative stress in toadfish (Halobactrachus didactylus) cardiac muscle. Acute exposure to vanadate oligomers. J Inorg Biochem 90: 159–165, 2002

    Article  CAS  PubMed  Google Scholar 

  50. Lu B, Ennis D, Lai R, Bogdanovic E, Nikolov R, Salamon L, Fantus C, Le-Tien H, Fantus IG: Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). J Biol Chem 276: 35589–35598, 2001

    CAS  PubMed  Google Scholar 

  51. Cohen MD, Wei CI: Effects of ammonium metavanadate treatment upon macrophage glutathione redox cycle activity, superoxide production, and intracellular glutathione status. J Leukoc Biol 44: 122–129, 1988

    CAS  PubMed  Google Scholar 

  52. Sabbioni E, Pozzi G, Devos S, Pintar A, Casella L, Fischbach M: The intensity of vanadium(V)-induced cytotoxicity and morphological transformation in BALB/3T3 cells is dependent on glutathione-mediated bioreduction to vanadium(IV). Carcinogenesis 14: 2565–2568, 1993

    CAS  PubMed  Google Scholar 

  53. Alexandrova A, Kirkova M, Russanov E: In vitro effects of alloxan-vanadium combination on lipid peroxidation and on antioxidant enzyme activity. Gen Pharmacol 3: 489–493, 1998

    Google Scholar 

  54. Goldfine AB, Patti ME, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, Jiang ZY, Willsky GR, Kahn CR: Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: In vivo and in vitro studies. Metabolism 49: 400–410, 2000

    Article  CAS  PubMed  Google Scholar 

  55. Bishayee A, Chatterjee M: Time course effects of vanadium supplement on cytosolic reduced glutathione level and glutathione S-transferase activity. Biol Trace Elem Res 48: 275–285, 1995

    CAS  PubMed  Google Scholar 

  56. Lietz T, Bryla J: Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate. Arch Biochem Biophys 321: 501–509, 1995

    Article  CAS  PubMed  Google Scholar 

  57. Sies H, Akerboom TP: Glutathione disulfide (GSSG) efflux from cells and tissues. Methods Enzymol 105: 445–451, 1984

    CAS  PubMed  Google Scholar 

  58. DeLeve LD, Kaplowitz N: Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52: 287–305, 1991

    Article  CAS  PubMed  Google Scholar 

  59. Mayo JC, Sainz RM, Antoli I, Herrera F, Martin V, Rodriguez C: Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci 59: 1706–1713, 2002

    CAS  PubMed  Google Scholar 

  60. Llobet JM, Domingo JL: Acute toxicity of vanadium compounds in rats and mice. Toxicol Lett 23: 227–231, 1984

    Article  CAS  PubMed  Google Scholar 

  61. Okatani Y, Wakatsuki A, Kaneda C: Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. J Pineal Res 28: 89–96, 2000

    CAS  PubMed  Google Scholar 

  62. Kumar KV, Naidu MU, Shifow AA, Prayag A, Ratnakar KS: Melatonin: An antioxidant protects against cyclosporine-induced nephrotoxicity. Transplantation 67: 1065–1068, 1999

    CAS  PubMed  Google Scholar 

  63. Mun KC, Suh SI: Effect of melatonin on renal function in cyclosporine nephrotoxicity. Transplant Proc 32: 1919–1920, 2000

    CAS  PubMed  Google Scholar 

  64. Longoni B, Migliori M, Ferretti A, Origlia N, Panichi V, Boggi U, Filippi C, Cuttano MG, Giovannini L, Mosca F: Melatonin prevents cyclosporine-induced nephrotoxicity in isolated and perfused rat kidney. Free Radic Res 36: 357–363, 2002

    Article  CAS  PubMed  Google Scholar 

  65. Shin YH, Lee SH, Mun KC: Effect of melatonin on the antioxidant enzymes in the kidneys of cyclosporine-treated rats. Transplant Proc 34: 2650–2651, 2002

    Article  CAS  PubMed  Google Scholar 

  66. Esrefoglu M, Kurus M, Sahna E: The beneficial effect of melatonin on chronic cyclosporin A nephrotoxicity in rats. J Int Med Res 31: 42–44, 2003

    CAS  PubMed  Google Scholar 

  67. Parlakpinar H, Sahna E, Ozer MK, Ozugurlu F, Vardi N, Acet A: Physiological and pharmacological concentrations of melatonin protect against cisplatin-induced acute renal injury. J Pineal Res 33: 161–166, 2002

    Article  CAS  PubMed  Google Scholar 

  68. Shifow AA, Kumar KV, Naidu MU, Ratnakar KS: Melatonin, a pineal hormone with antioxidant property, protects against gentamicin-induced nephrotoxicity in rats. Nephron 85: 167–174, 2000

    Article  CAS  PubMed  Google Scholar 

  69. Ozbek E, Turkoz Y, Sahna E, Ozugurlu F, Mizrak B, Ozbek M: Melatonin administration prevents the nephrotoxicity induced by gentamicin. BJU Int 85: 742–746, 2000

    Article  CAS  PubMed  Google Scholar 

  70. Sener G, Sehirli AO, Altunbas HZ, Ersoy Y, Paskaloglu K, Arbak S, Ayanoglu-Dulger G: Melatonin protects against gentamicin-induced nephrotoxicity in rats. J Pineal Res 32: 231–236, 2002

    CAS  PubMed  Google Scholar 

  71. Reiter RJ, Tan DX, Allegra M: Melatonin: Reducing molecular pathology and dysfunction due to free radicals and associated reactants. Neuroendocrinol Lett 23(suppl 1): 3–8, 2002

    CAS  PubMed  Google Scholar 

  72. Poon AM, Choy EH, Pang SF: Modulation of blood glucose by melatonin: A direct action on melatonin receptors in mouse hepatocytes. Biol Signals Recept 10: 367–379, 2001

    Article  CAS  PubMed  Google Scholar 

  73. Montilla PL, Vargas JF, Tunez IF, Munoz de Agueda MC, Valdelvira ME, Cabrera ES: Oxidative stress in diabetic rats induced by streptozotocin: Protective effects of melatonin. J Pineal Res 25: 94–100, 1998

    CAS  PubMed  Google Scholar 

  74. Gorgun FM, Ozturk Z, Gumustas MK, Kokogu E: Melatonin administration affects plasma total sialic acid and lipid peroxidation levels streptozotocin induced diabetic rats. J Toxicol Environ Health A 65: 695–700, 2002

    CAS  PubMed  Google Scholar 

  75. Martin V, Sainz RM, Antolin I, Mayo JC, Herrera F, Rodriguez C: Several antioxidant pathways are involved in astrocyte protection by melatonin. J Pineal Res 33: 204–212, 2002

    Article  CAS  PubMed  Google Scholar 

  76. Sener G, Tosun O, Sehirli AO, Kacmaz A, Arbak S, Ersoy Y, Ayanoglu-Dulger G: Melatonin and N-acetylcysteine have beneficial effects during hepatic ischemia and reperfusion. Life Sci 72: 2707–2718, 2003

    Article  CAS  PubMed  Google Scholar 

  77. Smaili SS, Hsu YT, Carvalho AC, Rosenstock TR, Sharpe JC, Youle RJ: Mitochondria, calcium and pro-apoptotic proteins as mediators cell death signaling. Braz J Med Biol Res 36: 183–190, 2003

    Article  CAS  PubMed  Google Scholar 

  78. D'Cruz OJ, Uckun FM: Metvan: A novel oxovanadium(IV) complex with broad spectrum anticancer activity. Expert Opin Investig Drugs 11: 1829–1836, 2002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiersztan, A., Winiarska, K., Drozak, J. et al. Differential effects of vanadium, tungsten and molybdenum on inhibition of glucose formation in renal tubules and hepatocytes of control and diabetic rabbits: Beneficial action of melatonin and N-acetylcysteine. Mol Cell Biochem 261, 9–21 (2004). https://doi.org/10.1023/B:MCBI.0000028733.88718.c3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000028733.88718.c3

Navigation