Skip to main content
Log in

Losartan reverses fibrotic changes in cortical renal tissue induced by ischemia or ischemia-reperfusion without changes in renal function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Unilateral renal ischemia for 40 min in rat results in increased fibronectin (FN) expression in proximal tubular cells. This study examines the role of 24 h of blood reperfusion and the role of the renin-angiotensin system (RAS) on these results. Rats were submitted to 40 min of unilateral renal ischemia followed by 24 h of blood reperfusion. Renal function was assayed by clearance measurement in metabolic cages. Intracellular ATP and calcium were determined in proximal tubules. The expression and abundance of FN were investigated by reverse transcription-polymerase chain reaction, ELISA and Western blot either in isolated proximal tubules or cortex homogenates from control, ischemic and ischemic with reperfusion rats. Matrix metalloproteases (MMPs) activity was also measured. Losartan effects on renal function and on the abundance of FN and the MMPs activity in cortical homogenates were also measured. The renal function remained altered after 24 h of reperfusion in untreated and losartan-treated ischemic rats. On the other hand, the abundance of FN is increased after reperfusion both in isolated proximal tubules and total cortex homogenates and the same pattern was observed in the MMPs activity. Twenty-four h of blood reperfusion presented FN-mRNA signals similar to control ones. Losartan pretreated-rats presented diminished FN abundance in homogenates of cortex tissue from ischemic rats with or without reperfusion. Similar results were observed in the MMPs-activity. These results suggest that angiotensin II acting via the AT1 receptor plays a role in the development of tubulointersticial fibrosis after ischemia-reperfusion by activation of intrarenal RAS from the injured kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toback FG: Regeneration after acute tubular necrosis. Kidney Int 41: 226-246, 1992

    PubMed  Google Scholar 

  2. Venkathalam MA, Bernard DB, Donohoe J, Levinsky NG: Ischemic damage and repair in the rat proximal tubule. Differences among S1, S2 and S3 segments. Kidney Int 14: 31-49, 1978

    PubMed  Google Scholar 

  3. Okada H, Strutz F, Danoff TM, Neilson EG: Possible pathogenesis of renal fibrosis. Kidney Int 49: S37-S38, 1996

    Google Scholar 

  4. Terzi F, Burtin M, Friedlander G: Early molecular mechanisms in the progression of renal failure: Role of growth factors and protooncogenes. Kidney Int 53: S68-S73, 1998

    Google Scholar 

  5. Safirstein R. Gene expression in nephrotoxic and ischemic acute renal failure. J Am Soc Nephrol 4: 1387-1395, 1994

    PubMed  Google Scholar 

  6. Klahr S, Schreiner G, Ichikawa J: The progression of renal disease. New Engl J Med 318: 1657-1666, 1988

    PubMed  Google Scholar 

  7. Kuncio GS, Nelson EG, Haverty T: Mechanisms of tubulointerstitial fibrosis. Kidney Int 39: 550-556, 1991

    PubMed  Google Scholar 

  8. Ignoz RA, Massagne J: Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261: 4337-4345, 1986

    PubMed  Google Scholar 

  9. Ong ACM, Fine HG: Loss of glomerular function and tubulointerstitial fibrosis: Cause and effect. Kidney Int 39: 401-420, 1991

    PubMed  Google Scholar 

  10. Eddy AA, Giachelli CM: Renal expression of genes that promote interstitial inflamation and fibrosis in rats with protein-overload proteinuria. Kidney Int 47: 1546-1557, 1995

    PubMed  Google Scholar 

  11. Wolf G, Neilson EG: Molecular Mechanims of tubulointerstitial hyperthrophy and hyperplasia. Kidney Int 39: 401-420, 1991

    PubMed  Google Scholar 

  12. Jones C, Buch S, Post M, Mc Culloch H, Hin E, Eddy AE: Pathogenesis of interstitial fibrosis in chronic purine aminonucleoside nephrosis. Kidney Int 40: 1020-1031, 1991

    PubMed  Google Scholar 

  13. Basile PD, Martin DR, Hammerman MR. Extracellular matrix-related genes in kidney after ischemic injury: Potential role for TGF-β in repair. Am J Physiol 275: F894-F903, 1998

    PubMed  Google Scholar 

  14. Zuk A, Bonventre JV, Brown D, Matlin KS: Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol 275: C711-C731, 1998

    PubMed  Google Scholar 

  15. Viedt C, Bürger A, Hänsch GM: Fibronectin synthesis in tubular epithelial cells: Up-regulation of the EDA splice variant by transforming growth factor β. Kidney Int 48: 1810-1817, 1995

    PubMed  Google Scholar 

  16. Burton CJ, Combe C, Walls J, Harris KPG: Fibronectin production by human tubular cells: The effect of apical protein. Kidney Int 50: 760-767, 1996

    PubMed  Google Scholar 

  17. Morrisey K, Steadman R, Williams JD, Phillips AO: Renal proximal tubular cell fibronectin accumulation in response to glucose is polyol pathway dependent. Kidney Int 55: 160-167, 1999

    Article  PubMed  Google Scholar 

  18. Bürger A., Wagner Ch, Viedt C, Reis B, Hug F, Hänsch GM: Fibronectin synthesis by human tubular ephitelial cells in culture: Effects of PDGF and TGF-β on synthesis and splicing. Kidney Int: 54: 407-415, 1998

    Article  PubMed  Google Scholar 

  19. Petrini G, Ochoa EJ, Serra E, Torres AM, Elías MM: Fibronectin expression in proximal tubules from ischemic rat kidneys without reperfusion. Moll Cell Biochem 241: 21-27, 2002

    Article  Google Scholar 

  20. Yoo KH, Thornhill BA, Chevalier RL: Angiotensin stimulates TGF-β and clusterin in the hydronephrotic neonatal rat kidney. Am J Physiol 278: R640-R645, 2000

    Google Scholar 

  21. Campistol JM, Iñigo P, Jimenez W, Lario S, Clesca PH, Oppenheimer F, Rivera F: Losartan decreases plasma levels of TGF-β1 in transplant patients with cronic allograft nephropathy. Kidney Int 56: 714-719, 1999

    Article  PubMed  Google Scholar 

  22. Kontogiannis J., Burns KD: Role of AT1 angiotensin II receptors in renal ischemic injury. Am J Physiol 274: F79-F90, 1998

    PubMed  Google Scholar 

  23. Nakamura T, Takahashi T, Fukui M, Ebihara I, Osada S, Tomino Y, Koide H: Enalapril attenuates increased gene expression of extracellular matrix components in diabetic rats. J Am Soc Nephrol 5: 1492-1497

  24. Reinhardt D, Sigusch HH, Hensse J, Tyagi SC, Korfer R, Figulla HR: Cardiac remodelling in end stage heart failure: upregulation of matrix matalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart 88: 525-530, 2002

    Article  PubMed  Google Scholar 

  25. Peters H, Border WA, Noble NA: Targeting TGF-beta overexpression in renal disease: Maximizing the antifibrotic action of angiotensin II blockade. Kidney Int 54: 1570-1580, 1998

    Article  PubMed  Google Scholar 

  26. Khalil A, Tullus K, Bakhiet M, Burman LG, Jaremko G, Brauner A: Angiotensin II type 1 receptor antagonist (losartan) down-regulates transforming growth factor-β in experimental acute pyelonephritis. J Urol 164: 186-191, 2000

    Article  PubMed  Google Scholar 

  27. Coux G, Trumper L, Elías MM: Cortical Na+, K+-ATPase activity, abundance and distribution after in vivo renal ischemia without reperfusion in rats. Nephron 89: 82-89, 2001

    Article  PubMed  Google Scholar 

  28. Vinay P, Gougoux A, Lemieux G: Isolation of a pure suspension of rat proximal tubules. Am J Physiol 241: F403-F411, 1981

    PubMed  Google Scholar 

  29. Brunette MG, Chan M, Lebrun M: Phosphatase activity along the nephron of mice with hypophosphatemic vitamin-D-resistant rickets. Kidney Int 20: 181-188, 1981

    PubMed  Google Scholar 

  30. Grynkiewicz G, Polnie M, Tsien R: A new generation of Ca2+ indication with greatly improved fluorescence properties. J Biol Chem 260: 3440-3450, 1985

    PubMed  Google Scholar 

  31. Proksch JW, Traylor LA, Mayeux PR: Effects of lipid A on calcium homeostasis in renal proximal tubules. J Pharmacol Exp Ther 276: 555-560, 1996

    PubMed  Google Scholar 

  32. Sedmak JJ, Grossberg SE: A rapid, sensitive and versatile assay for protein using Coomassie Brilliant Blue G-250. Anal Biochem 79: 544-552, 1971

    Article  Google Scholar 

  33. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685, 1970

    Article  PubMed  Google Scholar 

  34. Towbin H, Staehelim T, Gordon J: Electroforetic transfer of protein from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76: 4350-4353, 1979

    PubMed  Google Scholar 

  35. Kretzler M, Fan G, Rose D, Arend LJ, Brigg JP, Holzman LB: Novel mouse embryonic renal marker gene products differentially expressed during kidney development. Am J Physiol 271: 770-777, 1996

    Google Scholar 

  36. Schwarzbauer JE, Tamkun JW, Lenischka IR, Hynes RO: Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 35: 421-431, 1983

    Article  PubMed  Google Scholar 

  37. Kleiner DE, Stetler-Stevenson WG.: Quantitative zimography: Detection of picogram quantities of gelatinases. Anal Biochem218: 325-329, 1994

    Article  PubMed  Google Scholar 

  38. Brady HR, Brenner BM, Lieberthal W: Acute renal failure. In: B.M. Brenner (ed). The Kidney, vol. 2. W.B. Saunders Company, Boston, Massachusetts, 1996, pp 1200-1252

    Google Scholar 

  39. Ward RV, Hembry RM, Reynols JJ, Murphy G: The purification of tissue inhibitor of metalloproteinases-2 from its 72 kDa progelatinase complex: Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1. Biochem J 278: 179-187, 1991

    PubMed  Google Scholar 

  40. Hanemaaijer R, Koolwijk P, Le Clercq L, De Vree WJ, Van Hinsbergh VW: Regulation of matrix metalloproteinase expression in human vein and microvascular endotelial cells: Effects of tumor necrosis factor β, interleukin 1 and phorbol ester. Biochem J 296: 803-809, 1993

    PubMed  Google Scholar 

  41. Eberhardt W, Beeg T, Beck KF, Walpen S, Gauer S, Böhles H, Pfeilschifter J: Nitric oxide modulates expression of matrix metalloproteinase-9 in rat mesangial cells. Kidney Int 57: 59-69, 2000

    Article  PubMed  Google Scholar 

  42. Coux G, Trumper L, Elías MM: Renal function and cortical (Na+K)-ATPase activity, abundance and distribution after ischaemia-reperfusion in rats. Biochim Biophys Acta 62072: 1-10, 2001

    Google Scholar 

  43. Molitoris BA, Marrs J: The role of cell adhesion molecules in ischemic acute renal failure. Am J Med 106: 583-592, 1999

    PubMed  Google Scholar 

  44. Fernandez Lama P, Andrews P, Turner R, Saggi S, Dimari J, Kwon T, Nielsen S, Safirstein R, Knepper M: Decreased abundance of collecting duct aquaporins in post ischemic renal failure in rats. J Am Soc Nephrol 10: 1658-1668, 1999

    PubMed  Google Scholar 

  45. Kwon T, Fröiaer J, Han JS, Knepper MA, Nielsen S: Decreased abundance of major Na+ transporters in kidneys of rats with ischemia-induced acute renal failure. Am J Physiol 278: F925-F939, 2000

    Google Scholar 

  46. Smoyer WE, Ransom R, Harris RC, Welsh MJ, Lutsch G, Benndorf R: Ischemic acute renal failure induces differential expression of small heat shock proteins. J Am Soc Nephrol 11: 211-221, 2000

    PubMed  Google Scholar 

  47. Miyagima A, Chen J, Lawrence C, Ledbetter S, Soslow RA, Stern J, Jha S, Pigato J, Lemer ML, Poppas DP, Darracott Vaughan E, Felsen D: Antibody to transforming growth factor-β ameliorates tubular apoptosis in unilateral obstruction. Kidney Int 58: 2301-2313, 2000

    Article  PubMed  Google Scholar 

  48. Zuk A, Bonventre JV, Matlin KS: Expression of fibronectin splice variants in the postischemic rat kidney. Am J Physiol 280: F1037-F1053, 2001

    Google Scholar 

  49. Eddy AA: Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 7: 2495-2508, 1996

    PubMed  Google Scholar 

  50. Lodisch H, Baltimore D, Berk A, Zipursky L, Matsudaira P, Darnell J: In: Molecular Cell Biology, 3rd edn, Chapter 16. ?Publisher, Town.? 1995, pp 669-738

  51. Kazes I, Delarue F, Hagege J, Bouzhir-Sima L, Sraer JD, Nguyen G: Soluble latent membrane-type 1 matrix metalloprotease secreted by human mesangial cells is activated by urokinase. Kidney Int 54: 1976-1984, 1998

    Article  PubMed  Google Scholar 

  52. Martin J, Lovett D, Gemsa D, Sterzel R, Davies M: Enhancement of glomerular mesangial cell neutral proteinase secretion by macrophages: Role of interleukin 1. J Immunol 137: 525-529, 1986

    PubMed  Google Scholar 

  53. Martin J, Knowlden J, Davies M, Willams JD: Identification and independent regulation of human mesangial cell metalloproteinases. Kidney Int 46: 877-885, 1994

    PubMed  Google Scholar 

  54. Bafetti LM, Young TN, Itoh Y, Stak MS: Intact vitronectin induces matrix metalloproteinases-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J Biol Chem 273: 143-149, 1998

    Article  PubMed  Google Scholar 

  55. Martin J, Eynstone L, Davies M, Stead R: Induction of metalloproteinases by glomerular mesangial cells stimulated by proteins of the extracellular matrix. J Am Soc Nephrol 12: 88-96, 2001

    PubMed  Google Scholar 

  56. Brenner BM, Zagrobelny JA: Clinical renoprotection trials involving angiotensinII-receptor antagonists and angiotensin-converting-enzyme inhibitors. Kidney Int 63(suppl 83): S77-S85, 2003

    Article  Google Scholar 

  57. Satoh M, Kashihara N, Yamasaki Y, Maruyama K, Okamoto K, Maeshima Y, Sugiyama H, Sugaya T, Murakami K, Makino H: Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol 12: 317-325, 2001

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrilli, A., Molinas, S., Petrini, G. et al. Losartan reverses fibrotic changes in cortical renal tissue induced by ischemia or ischemia-reperfusion without changes in renal function. Mol Cell Biochem 260, 161–170 (2004). https://doi.org/10.1023/B:MCBI.0000026068.38301.cf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000026068.38301.cf

Navigation