Skip to main content
Log in

Various stressors rapidly activate the p38-MAPK signaling pathway in Mytilus galloprovincialis (Lam.)

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The stimulation of p38-MAPK signal transduction pathway by various stressful stimuli was investigated in the marine bivalve M. galloprovincialis. Oxidative stress (5 μM H2O2) induced a biphasic pattern of p38-MAPK phosphorylation with maximal values attained at 15 min (8.1-fold) and 1 h (8.0-fold) of treatment respectively. Furthermore, 1 μM SB203580 abolished the p38-MAPK phosphorylation induced by oxidative stress. Aerial exposure also induced a biphasic pattern of p38-MAPK phosphorylation, with maximal values attained at 1 h (6.8-fold) and 8 h (4.9-fold) respectively. Re-oxygenation following a 15 min of aerial exposure resulted in the progressive dephosphorylation of the kinase. Treatment with 0.5 M sorbitol (in normal seawater) induced the rapid kinase phosphorylation (9.2-fold) and this effect was reversible. Seawater salinities varying between 100–60% had no effect, whereas a salinity of 50% induced a significant p38-MAPK phosphorylation. Furthermore, hypertonicity (120% seawater) resulted in a moderate kinase phosphorylation. All the above results demonstrate for the first time in a marine invertebrate imposed to environmental and other forms of stress as an intact, living organism, that the p38-MAPK pathway is specifically activated by various stressful stimuli which this animal can often face and sustain in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheehan D, Power A: Effects of seasonality on xenobiotic and antioxidant defense mechanism of bivalve molluscs. Comp Biochem Physiol 123C: 193-199, 1999

    Google Scholar 

  2. De Zwaan A, Eertman RHM: Anoxic or aerial survival of bivalves and other euryoxic invertebrates as a useful response to environmental stress. A comprehensive review. Comp Biochem Physiol 113C: 299-312, 1996

    Google Scholar 

  3. Hochachka PW, Lutz PL: Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol 130B: 435-459, 2001

    Google Scholar 

  4. De Zwaan A, Cortesi P, Van der Thillart G, Roos J, Storey KB: Differential sensitivities to hypoxia by two anoxia-tolerant marine mollusks: A biochemical analysis. Mar Biol 111: 343-351, 1991

    Article  Google Scholar 

  5. Viarenco A, Burlando B, Cavaletto M, Marchi B, Ponzano E, Blasco J: Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am J Physiol 277: R1612-R1619, 1999

    PubMed  Google Scholar 

  6. Cavaletto M, Ghezzi A, Burlando B, Evangelisti V, Ceratto N, Viarengo A: Effect of hydrogen peroxide on antioxidant enzymes and metallothionein level in the digestive gland of Mytilus galloprovincialis. Comp Biochem Physiol 131C: 447-455, 2002

    Google Scholar 

  7. Karin M: The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270: 16483-16486, 1995

    PubMed  Google Scholar 

  8. Muller JM, Krauss B, Kaltschmidt C, Baeuerle PA, Rupec RA: Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J Biol Chem 272: 23435-23439, 1997

    Article  PubMed  Google Scholar 

  9. Ladare K, Nimigan A, Storey KB: Transcription pattern of birosomal protein L26 during anoxia exposure in Littorina littorea. J Exp Zool 290: 759-768, 2001

    Article  PubMed  Google Scholar 

  10. Kyriakis JM, Avruch J: Sounding the alarm: Protein kinase cascades activated by stress and inflammation. J Biol Chem 271: 24313-24316, 1996

    Article  PubMed  Google Scholar 

  11. Kyriakis JM, Avruch J: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807-869, 2001

    PubMed  Google Scholar 

  12. Page C, Doubell AF: Mitogen-activated protein kinase (MAPK) in cardiac tissues. Mol Cell Biochem 157: 49-57, 1996

    Article  PubMed  Google Scholar 

  13. Seger R, Krebs EG: The MAPK signaling cascade. FASEB J 9: 726-735, 1995

    PubMed  Google Scholar 

  14. Cohen P: The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol 7: 353-361, 1997

    Article  Google Scholar 

  15. Schaeffer HT, Weber MJ: Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol Cell Biol 19: 2435-2444, 1999

    PubMed  Google Scholar 

  16. Pearson G, Robinson F, Gibson TB, Xu RE, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr Rev 22: 153-183, 2001

    Article  PubMed  Google Scholar 

  17. Widmann C, Gibson S, Jarpe MB, Johnson GL: Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143-180, 1999

    PubMed  Google Scholar 

  18. Canesi L, Betti M, Ciacci C, Gallo C: Insulin effect of zinc in Mytilus digestive gland cells: Modulation of tyrosine kinase-mediated cell signaling. Gen Comp Endocrinol 122: 60-66, 2001

    Article  PubMed  Google Scholar 

  19. Canesi L, Betti M, Ciacci C, Scarpato A, Citterio B, Pruzzo C, Gallo G: Signaling pathways involved in the physiological response of mussel hemocytes to bacterial challenge: the role of stress-activated p38 MAP kinases. Dev Comp Immunol 26: 325-334, 2002

    Article  PubMed  Google Scholar 

  20. Abele D, Burlando B, Viarengo A, Portner HO: Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol 120B: 425-435, 1998

    Google Scholar 

  21. Takemoto Y, Yoshiyama M, Takeuchi K, Omura T, Komatsu R, Izumi Y, Kim S, Yoshikawa J: Increased JNK, AP-1 and NF-κB DNA binding activities in isoproterenol-induced cardiac remodeling. J Mol Cell Cardiol 31: 2017-2030, 1999

    Article  PubMed  Google Scholar 

  22. Aggeli IKS, Gaitanaki C, Lazou A, Beis I: Stimulation of multiple MAPK pathways by mechanical overload in the amphibian heart. Am J Physiol 281: R1689-1698, 2001a

    Google Scholar 

  23. Aggeli IKS, Gaitanaki C, Lazou A, Beis I: Activation of multiple MAPK pathways (ERK, JNKs, p38-MAPK) by diverse stimuli in the amphibian heart. Mol Cell Biochem 221: 63-69, 2001b

    Article  PubMed  Google Scholar 

  24. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D: Functional significance of cell volume regulatory mechanisms. Phys Rev 78: 247-306, 1998

    Google Scholar 

  25. Somero GN, Yancey PH: Osmolytes and cell volume regulation: Physiological and evolutionary principles. In: J.F. Hoffmann, J.D. Jamieson (eds). Handbook of Physiology, section 14, Cell Physiology. Oxford University Press, New York, 1997, pp 441-484

    Google Scholar 

  26. Winston GW, DiGiulio RT: Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19: 137-161, 1991

    Article  Google Scholar 

  27. Livingstone DR: Biotechnology and pollution monitoring. Use of molecular biomarkers in the aquatic environment. J Chem Technol Biotechnol 57: 195-211, 1993

    Google Scholar 

  28. Regoli F, Winston GW: Applications of a new method for measuring the total oxyradical scavenging capacity in marine invertebrates. Mar Environ Res 46: 439-442, 1998

    Article  Google Scholar 

  29. Gaitanaki C, Stathopoulou K, Stavridou C, Beis I: Oxidative stress activates multiple MAPK signal transduction pathways and the phosphorylation of the small HSP27 in the amphibian heart. J Exp Biol 206: 2759-2769, 2003

    Article  PubMed  Google Scholar 

  30. Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF, Hai T, Whelan J: Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272: 19943-19950, 1997

    Article  PubMed  Google Scholar 

  31. Greenway SC, Storey KB: Activation of mitogen-activated protein kinases during natural freezing and thawing in wood frog. Mol Cell Biochem 209: 29-37, 2000

    Article  PubMed  Google Scholar 

  32. Greenway SC, Storey KB: Mitogen-activated protein kinases and anoxia tolerance in turtles. J Exp Zool 287: 477-484

  33. Cowan KJ, Storey KB: Mitogen-activated protein kinases: New signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206: 1107-1115

  34. Aggeli IKS, Gaitanaki C, Lazou A, Beis I: Hyperosmotic and thermal stresses activate p38-MAPK in the perfused amphibian heart. J Exp Biol 205: 443-454, 2002

    PubMed  Google Scholar 

  35. Sadoshima J, Qiu Z, Morgan JP, Izumo S: Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J 15: 5535-5546, 1996

    PubMed  Google Scholar 

  36. Kulitz D, Avila K: Mitogen-activated protein kinases are in vivo transducers of osmosensory signals in fish gill cells. Comp Biochem Physiol 129B: 821-829, 2001

    Google Scholar 

  37. Walker ST, Mantle D, Bythell JC, Thomason JC: Oxidative stress: Comparison of species specific and tissue specific effects in the marine bivalves Mytilus edulis (L.) and Dosinia lupinus (L.). Comp Biochem Physiol 127B: 347-355, 2000

    Google Scholar 

  38. Mizukami Y, Yoshioka K, Morimoto S, Yoshida K: A novel mechanism of JNK1 activation. J Biol Chem 272: 16657-16662, 1997

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaitanaki, C., Kefaloyianni, E., Marmari, A. et al. Various stressors rapidly activate the p38-MAPK signaling pathway in Mytilus galloprovincialis (Lam.). Mol Cell Biochem 260, 119–127 (2004). https://doi.org/10.1023/B:MCBI.0000026064.73671.91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000026064.73671.91

Navigation