Skip to main content
Log in

Import and export of nuclear proteins: Focus on the nucleocytoplasmic movements of two different species of mammalian estrogen receptor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

There is a wealth of information regarding the import and export of nuclear proteins in general. Nevertheless, the available data that deals with the nucleocytoplasmic movement of steroid hormone receptors remains highly limited. Some research findings reported during the past five years have succeeded in identifying proteins related to the movement of estrogen receptor α from the cytoplasm to the nucleus. What is striking in these findings is the facilitatory role of estradiol in the transport process. A similar conclusion has been drawn from the studies on the plasma membrane-to nucleus movement of the alternative form of estrogen receptor, the non-activated estrogen receptor (naER). The internalization of naER from the plasma membrane takes place only in the presence of estradiol. While the gene regulatory functions of ERα appear to get terminated following its ubiquitinization within the nucleus, the naER, through its deglycosylated form, the nuclear estrogen receptor II (nER II) continues to remain functional even beyond its existence within the nucleus. Recent studies have indicated the possibility that the estrogen receptor that regulates the nucleo cytoplasmic transport of m RNP is the nERII. This appears to be the result of the interaction between nERII and three proteins belonging to a group of small nuclear ribonucleo proteins (snRNP). The interaction of nERII with two of this protein appears to activate the inherent Mg2+ ATPase activity of the complex, which leads to the exit of the RNP through the nuclear pore complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maul GG: The nuclear and the cytoplasmic pore complex: Structure, dynamics, distribution, and evolution. Int Rev Cytol 6(suppl): 75-186, 1977

    Google Scholar 

  2. Rout MP, Blobel G: Isolation of the yeast nuclear pore complex. J Cell Biol 123: 771-783, 1993

    Article  PubMed  Google Scholar 

  3. Mattaj IW, Englmeier L: Nucleocytoplasmic transport: The soluble phase. Annu Rev Biochem 67: 265-306, 1998

    Article  PubMed  Google Scholar 

  4. Macara IG: Transport into and out of the nucleus. Microbiol Mol Biol Rev 65: 570-594, 2001

    Article  PubMed  Google Scholar 

  5. Stewart M, Baker RP, Bayliss R, Clayton L, Grant RP, Littlewood T, Matsuura Y: Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import. FEBS Lett 498: 145-149, 2001

    Article  PubMed  Google Scholar 

  6. Ribbeck K, Gorlich D: Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20: 1320-1330, 2001

    Article  PubMed  Google Scholar 

  7. Pinol-Roma S, Dreyfuss G: Shuttling of pre-MRNA binding proteins between nucleus and cytoplasm. Nature 355: 730-732, 1992

    Article  PubMed  Google Scholar 

  8. Thampan TNRV, Clark JH: An estrogen receptor activator protein in rat uterine cytosol. Nature 290: 152-154, 1981

    Article  PubMed  Google Scholar 

  9. Thampan RV: A 62 kDa protein functions as estrogen receptor activation factor (E-RAF) in the goat uterus. Mol Cell Endocrinol 53: 119-130, 1987

    Article  PubMed  Google Scholar 

  10. Thampan RV: Molecular aspects of estrogen receptor activation factor function. Mol Cell Endocrinol 64: 19-34, 1989

    Article  PubMed  Google Scholar 

  11. Govind AP, Sreeja S, Thampan RV: (a) Proteins that mediate the nuclear entry of the goat uterine estrogen receptor activation factor (E-RAF): Identification of a molecular basis for the inhibitory effect of progesterone on estrogen action. J Cell Biochem (in press)

  12. Govind AP, Sreeja S, Thampan RV: (b) Estradiol dependent anchoring of the goat uterine estrogen receptor activation factor (E-RAF) at the endoplasmic reticulum by a 55 kDa anchor protein (ap 55). J Cell Biochem (in press)

  13. Sreeja S: Molecular mechanisms associated with the plasma membrane-to-nucleus movement of the goat uterine non-activated estrogen receptor. Ph.D. Thesis, University of Kerala, 2001

  14. Kalderon D, Roberts BL, Richardson WD, Smith AE: A short amino acid sequence able to specify nuclear location. Cell 39: 499-509, 1984

    Article  PubMed  Google Scholar 

  15. Robbins J, Dilworth SM, Laskey RA, Dingwall C: Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence. Cell 64: 615-623, 1991

    Article  PubMed  Google Scholar 

  16. Imamoto N, Tachibana T, Matsubae M, Yoneda Y: A karyophilic protein forms a stable complex with cytoplasmic component prior to nuclear pore binding. J Biol Chem 270: 8559-8565, 1995

    Article  PubMed  Google Scholar 

  17. Gorlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehn S: Two different subunits of importin cooperates to recognize nuclear localization signal and bind them to the nuclear envelope. Curr Biol 5: 383-392, 1995

    Article  PubMed  Google Scholar 

  18. Moroianu J, Blobel G, Radu A: Previously identified protein of uncertain function is karyopherin α and together with karyopherin β docks import substrate at nuclear pore complex. Proc Natl Acad Sci USA 92: 2008-2011, 1995

    PubMed  Google Scholar 

  19. Moore MS, Blobel G: The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365: 661-663, 1993

    Article  PubMed  Google Scholar 

  20. Moore MS, Blobel G: Purification of Ran-interacting protein that is required for protein import into the nucleus. Proc Natl Acad Sci USA 10: 10212-10216, 1994

    Google Scholar 

  21. Paschal BM, Gerace L: Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J Cell Biol 129: 925-937, 1995

    Article  PubMed  Google Scholar 

  22. Doye V, Hurt E: From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 9: 401-411, 1997

    Article  PubMed  Google Scholar 

  23. Yoshida K, Blobel G: The karyopherin Kap 142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J Cell Biol 152: 729-740, 2001

    Article  PubMed  Google Scholar 

  24. Mingot J.-M, Kostka S, Kraft R, Hartmann E, Gorlich D: Importin 13: A novel mediator of nuclear import and export. EMBO J 20: 3685-3694, 2001

    Article  PubMed  Google Scholar 

  25. Siomi H, Dreyfuss G: A nuclear localization domain in the hnRNPA1 protein. J Cell Biol 129: 551-560, 1995

    Article  PubMed  Google Scholar 

  26. Pollard VW, Michael WM, Nakielny S, Siomi MC, Wang F, Dreyfuss G: A novel receptor-mediated nuclear protein import pathway. Cell 86: 985-994, 1996

    Article  PubMed  Google Scholar 

  27. Aitchison JD, Blobel G, Rout MP: Kap104p: A karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274: 624-627, 1996

    Article  PubMed  Google Scholar 

  28. Luhrmann R, Kastner B, Bach M: Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim Biophys Acta 1087: 265-292, 1990

    PubMed  Google Scholar 

  29. Fischer U, Luhrmann R: An essential signaling role for the m3G-cap in the transport of U1 snRNP to the nucleus. Science 249: 786-790, 1990

    PubMed  Google Scholar 

  30. Huber J, Cronshagen U, Kadokura M, Marshallsay C, Wada T, Sekine M, Luhrmann R: Snurportin 1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 17: 4114-4126, 1998

    Article  PubMed  Google Scholar 

  31. Schaap PJ, van't Riet J, Woldringh CL, Raue HA: Identification and functional analysis of the nuclear localization signals of ribosomal protein L25 from Saccharomyces cerevisiae. J Mol Biol 221: 225-237, 1991

    Article  PubMed  Google Scholar 

  32. Kambach C, Mattaj IW: Intracellular distribution of the U1A protein depends on active transport and nuclear binding to U1 snRNA. J Cell Biol 118: 11-21, 1992

    Article  PubMed  Google Scholar 

  33. Izaurralde E, Jarmolowski A, Beisel C, Mattaj IW, Dreyfuss G, Fischer U: A role for the M9 transport signal of hnRNP A1 in mRNA nuclear export. J Cell Biol 137: 27-35, 1997

    Article  PubMed  Google Scholar 

  34. Bischoff FR, Klebe C, Kretschmer J, Wittingghofer A, Ponstingl H: RanGAP1 induces GTPase activity of nuclear ras-related Ran. Proc Natl Acad Sci USA 91: 2587-2591, 1994

    PubMed  Google Scholar 

  35. Bischoff FR, Ponstingl H: Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC I. Nature 354: 80-82, 1991

    Article  PubMed  Google Scholar 

  36. Weis K: Nucleocytoplasmic transport: Cargo trafficking across the border. Curr Opin Cell Biol 14: 328-335, 2002

    Article  PubMed  Google Scholar 

  37. Gorlich D, Pante N, Kutay U, Aebi U, Bischoff FR: Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15: 5584-5594, 1996

    PubMed  Google Scholar 

  38. Guiochon-Mantel A, Lescop P, Christin-Maitre S, Loosefelt H, Perrot Appalant M, Milgrom E: Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J 10: 3851-3859, 1991

    PubMed  Google Scholar 

  39. Dauvois S, White R, Parker MG: The anti estrogen ICI 182780 disrupts estrogen receptor nuclcocytoplasmic shuttling. J Cell Sci 106: 1377-1388, 1993

    PubMed  Google Scholar 

  40. Madan AP, DeFranco DB: Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc Natl Acad Sci USA 90: 3588-3592, 1993

    PubMed  Google Scholar 

  41. LaCasse EC, Lefebvre YA: Nuclear localization signals overlap DNA or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res 23: 1647-1656, 1995

    PubMed  Google Scholar 

  42. Guiochon-Mantel A, Lescop P, Sar S, Atger M, Perrot Applanant M, Milgrom E: Mechanisms of nuclear localization of the progesterone receptor: Evidence for interactions between monomers. Cell 57: 1147-1154, 1989

    Article  PubMed  Google Scholar 

  43. Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P: Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J 11: 3681-3694, 1992

    PubMed  Google Scholar 

  44. Picard D, Yamamoto KR: Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6: 3333-3340, 1987

    PubMed  Google Scholar 

  45. Picard D, Kumar V, Chambon P, Yamamoto KR: Signal transduction by steroid hormones: Nuclear localization is differentiately regulated in estrogen and progesterone receptors. Cell Regul 1: 291-299, 1990b

    PubMed  Google Scholar 

  46. Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR: Reduced levels of hsp90 compromise steroid action in vivo. Nature 348: 166-168, 1990a

    Article  PubMed  Google Scholar 

  47. Sai Padma A, Renil M, Thampan RV: Protein-protein interactions that precede the nuclear entry of goat uterine estrogen receptor under cell-free conditions. J Cell Biochem 78: 650-665, 2000b

    Article  PubMed  Google Scholar 

  48. Welshons W, Lieberman ME, Gorski J: Nuclear localization of unoccupied estrogen receptors: Cytochalasin nucleation of GH3 cells. Nature 307: 747-749, 1984

    Article  PubMed  Google Scholar 

  49. Sackey FNA, Hache RJG, Reich T, Kwast-Welfeld J, Lefebvre YA: Determinants of subcellular distribution of the glucocorticoid receptor. Mol Endocrinol 10: 1191-1205, 1996

    Article  PubMed  Google Scholar 

  50. Pratt WB, Toft DO: Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18: 306-60, 1997

    Article  PubMed  Google Scholar 

  51. Bresnick EH, Dalman FC, Sanchez ER, Pratt WB: Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J Biol Chem 264: 4992-4997, 1989

    PubMed  Google Scholar 

  52. Cadepond F, Schweizergroyer G, Segardmaurel L, Jibard N, Holenberg SM, Giguere V, Evans RM, Baulieu EE: Heat shock protein-90 as a critical factor in maintaining glucocortocosteroid receptor in a nonfunctional state. J Biol Chem 266: 5834-5841, 1991

    PubMed  Google Scholar 

  53. Qi M, Hamilton BJ, DeFranco DB: V-mos oncoproteins affect the nuclear retention and reutilization of glucocorticoid receptors. Mol Endocrinol 3: 1279-1288, 1989

    PubMed  Google Scholar 

  54. Beg AA, Ruben SM, Scheinman RI, Haskill S, Rosen CA, Baldwin Jr AS: I kappa B interacts with the nuclear localization sequences of the subunits of NF-Kappa B: A mechanism for cytoplasmic retention. Genes Dev 6: 1899-1913, 1992

    PubMed  Google Scholar 

  55. Ganchi PA, Sun SC, Greene WC, Ballard DW: I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B65 DNA binding. Mol Biol Cell 3: 1339-1352, 1992

    PubMed  Google Scholar 

  56. Puca GA, Medici N, Armetta I, Nigro V, Moncharmont B, Molinari AM: Interaction between estrogen receptor and subcellular structures of target cells: Nuclear localization of unoccupied receptor and its modification induced by estradiol. Ann NY Acad Sci 464: 168-189, 1986

    PubMed  Google Scholar 

  57. Press MF, Greene GL: Localization of progesterone receptor with monoclonal antibodies to the human progesterone receptor. Endocrinology 122: 1165-1175, 1988

    PubMed  Google Scholar 

  58. Yang J, Liu J, DeFranco DB: Subnuclear trafficking of glucocorticoid receptors in vitro: Chromatin recycling and nuclear export. J Cell Biol 137: 523-538, 1997

    Article  PubMed  Google Scholar 

  59. Sanchez ER, Hirst M, Scherrer LC, Tang HY, Welsh MJ, Harmon JM, Simons SSJ, Ringold GM, Pratt WB: Hormone free mouse glucocorticoid receptors over expressed in Chinese hamster ovary cells are localized to the nucleus and are associated with both hsp 70 and hsp90. J Biol Chem 265: 20123-20130, 1990

    PubMed  Google Scholar 

  60. Martins VR, Pratt WB, Terracio L, Hirst MA, Ringold GM, Housley PR: Demonstration by confocal microscopy that unliganded over expressed glucocorticoid receptors are distributed in a non random manner throughout all planes of the nucleus. Mol Endocrinol 5: 217-225, 1991

    PubMed  Google Scholar 

  61. Jewell CM, Webster JC, Burnstein KL, Sar M, Bodwell JE, Cidlowski JA: Immunocytochemical analysis of hormone mediated nuclear trans-location of wild type and mutant glucocorticoid receptors. J Steroid Biochem Mol Biol 55: 135-146, 1995

    Article  PubMed  Google Scholar 

  62. Nirmala PB, Thampan RV: A 55 kDa protein (p55) of the goat uterus mediates nuclear transport of the estrogen receptor. I. Purification and characterization. Arch Biochem Biophys 319: 551-561, 1995a

    Article  PubMed  Google Scholar 

  63. Nirmala PB, Thampan RV: A 55 kDa protein (p55) of the goat uterus mediates nuclear transport of the estrogen receptor. II. Details of the transport mechanism. Arch Biochem Biophys 319: 562-569, 1995b

    Article  PubMed  Google Scholar 

  64. Sai Padma A, Thampan RV: Interdependence between a 55 kDa Protein (p55) and a 12 kDa Protein (p12) in facilitating the nuclear entry of goat uterine estrogen receptor under cell-free conditions. Biol Chem 381: 285-294, 2000a

    Article  PubMed  Google Scholar 

  65. Izaurralde E, Adam S: Transport of macromolecules between the nucleus and the cytoplasm. RNA 4: 351-364, 1998

    PubMed  Google Scholar 

  66. Klemm JD, Beals CR, Crabtree GR: Rapid targeting of nuclear proteins to the cytoplasm. Curr Biol 7: 638-644, 1997

    Article  PubMed  Google Scholar 

  67. Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R: The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475-483, 1995

    Article  PubMed  Google Scholar 

  68. Richards SA, Lounsbury KM, Carey KL, Macara IG: A nuclear export signal is essential for the cytoplasmic localization of the Ran binding protein, RanBP1. J Cell Biol 134: 1157-1168, 1996

    Article  PubMed  Google Scholar 

  69. Wen W, Meinkoth JL, Tsien RY, Taylor SS: Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463-473, 1995

    Article  PubMed  Google Scholar 

  70. Fornerod M, Ohno M, Yoshida M, Mattaj IW: CRMI is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051-1060, 1997

    Article  PubMed  Google Scholar 

  71. Adachi Y, Yanagida M: Higher order chromosome structure is affected by cold-sensitive mutations in a Schizo-saccharomyces pombe gene CRM1+, which encodes a 115-kDa protein preferentially localized in the nucleus and its periphery. J Cell Biol 108: 1195-1207, 1989

    Article  PubMed  Google Scholar 

  72. Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D: Export of importin alpha from the nucleus is mediated by specific nuclear transport factor. Cell 90: 1061-1071, 1997

    Article  PubMed  Google Scholar 

  73. Reed R, Magni K: A new view of mRNA export: Separating the wheat from the chaff. Nat Cell Biol 3: 201-204, 2001

    Article  Google Scholar 

  74. Calado A, Treichel N, Muller EC, Otto A, Kutay U: Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J 21: 6216-6224, 2002

    Article  PubMed  Google Scholar 

  75. Michael WM, Choi M, Dreyfuss G: A nuclear export signal in hnRNPA1: A signal-mediated, temperature-dependent nuclear protein export pathway. Cell 83: 415-422, 1995a

    Article  PubMed  Google Scholar 

  76. Michel WM, Eder PS, Dreyfuss G: The K nuclear shuttling domain: A novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J 16: 3587-3598, 1995b

    Article  Google Scholar 

  77. Fan XC, Steitz JA: HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 95: 15293-15298, 1998

    Article  PubMed  Google Scholar 

  78. Holaska JM, Black BE, Love DC, Hanover JA, Leszyk J, Paschal BM: Calreticulin is a receptor for nuclear export. J Cell Biol 152: 127-140, 2001

    Article  PubMed  Google Scholar 

  79. Wikstrom AC, Bakke O, Okret S, Bronnegard M, Gustafsson JA: Intracellular localization of the glucocorticoid receptor: Evidence for cytoplasmic and nuclear localization. Endocrinology 120: 1232-1242, 1987

    PubMed  Google Scholar 

  80. Cidlowski JA, Lbellingham D, Powell-Oliver FE, Lubahn DB, Sar M: Novel antipeptide antibodies to the human glucocorticoid receptor: Recognition of multiple distinct receptor forms in vitro and distinct localization of cytoplasmic and nuclear receptors. Mol Endocrinol 4: 1427-1437, 1990

    PubMed  Google Scholar 

  81. Orti E, Mendel DB, Smith LI, Bodwell JE, Munck A: A dynamic model of glucocorticoid receptor phosphor elation and recycling in intact cells. J Steroid Biochem 34: 85-96, 1989

    Article  PubMed  Google Scholar 

  82. Chandran UR, DeFranco DB: Internuclear migration of chicken progesterone receptor, but not semia virus-40 large tumor antigen in transient heterokaryons. Mol Endocrinol 6: 837-844, 1992

    Article  PubMed  Google Scholar 

  83. Guiochon-Mantel A, Delebre K, Lescop P, Milgrom E: Nuclear localization signals also mediate the outward movement of proteins from the nucleus. Proc Natl Acad Sci USA 91: 7179-7183, 1994

    PubMed  Google Scholar 

  84. Tyagi RK, Amazit L, Lescop P, Milgrom E, Guiochon-Mantel A: Mechanisms of progesterone receptor export from nuclei: Role of nuclear localization signal, nuclear export signal, and Ran guanosine triphosphate. Mol Endocrinol 12: 1684-1695, 1998

    Article  PubMed  Google Scholar 

  85. Liu J, DeFranco DB: Protracted nuclear export of the glucocorticoid receptor limits its turnover and does not require the exportin 1/CRMI-directed nuclear export pathway. Mol Endocrinol 14: 40-51, 2000

    Article  PubMed  Google Scholar 

  86. Black BE, Holaska JM, Rastinejad F, Paschal BM: DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr Biol 11: 1749-1758, 2001

    Article  PubMed  Google Scholar 

  87. Smith CL: Cross-talk between peptide growth factor and estrogen signaling pathways. Biol Rep 58: 627-632, 1998

    Article  PubMed  Google Scholar 

  88. Bunone G, Briand PA, Milsicek RJ, Picard D: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15: 2174-2183, 1996

    PubMed  Google Scholar 

  89. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushigae S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491-1494, 1995

    PubMed  Google Scholar 

  90. Rogatsky I, Trowbridge JM, Garabedian MJ: Potentiation of human estrogen receptor transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J Biol Chem 274: 22296-22302, 1999

    Article  PubMed  Google Scholar 

  91. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio FF: Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15: 1292-1300, 1996

    PubMed  Google Scholar 

  92. Chen D, Pace PE, Coombes C, Ali S: Phosphorylation of human estrogen receptor α by protein kinase A regulates dimerization. Mol Cell Biol 19: 1002-1015, 1999

    PubMed  Google Scholar 

  93. Joel PB, Smith J, Sturgill T, Fisher TL, Blenis J, Lannigan D. A: pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol 18: 1978-1984, 1998

    PubMed  Google Scholar 

  94. Arnold SF, Obourn JD, Jaffe H, Notides AC: Serine 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol Endocrinol 8: 1208-1214, 1994

    Article  PubMed  Google Scholar 

  95. Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS: Phosphorylation of the human estrogen receptor: Identification of hormone regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269: 4458-4466, 1994

    PubMed  Google Scholar 

  96. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O'Malley BW: The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 273: 12101-12108, 1998

    Article  PubMed  Google Scholar 

  97. Suen CS, Berrodin TJ, Mastroeni R, Cheskis BJ, Lyttle CR, Frail DE: A transcriptional coactivator, steroid receptor coactivator-3, selectively augments steroid receptor transcriptional activity. J Biol Chem 273: 27645-27653, 1998

    Article  PubMed  Google Scholar 

  98. Lee H, Jiang F, Wang Q, Nicosia SV, Yang JS, Bai W: MEKK1 activation of human estrogen receptor α and stimulation of the agonistic activity of 4-hydroxytamoxifen in endometrial and ovarian cancer cells. Mol Endocrinol 14: 1882-1896, 2000

    Article  PubMed  Google Scholar 

  99. Lee H, Bai W: Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol Cell Biol 22: 5835-5845, 2002

    Article  PubMed  Google Scholar 

  100. Razandi M, Pedram A, Levin ER: Estrogen signals to the preservation of endothelial cell form and function. J Biol Chem 275: 38540-38546, 2000

    Article  PubMed  Google Scholar 

  101. Engel K, Kotlyarov A, Gaestel M: Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. EMBO J 17: 3363-3371, 1998

    Article  PubMed  Google Scholar 

  102. del Arco PG, Martinez-Martinez S, Maldonado JL, Ortega-Perez I, Redondo JM: A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J Biol Chem 275: 13872-13878, 2000

    Article  PubMed  Google Scholar 

  103. Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Apella E, Fornace AJ Jr: Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18: 6845-6854, 1999

    Article  PubMed  Google Scholar 

  104. Zhang Y, Xiong Y: A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292: 1910-1915, 2001

    Article  PubMed  Google Scholar 

  105. Liu J, DeFranco DB: Chromatin recycling of glucocorticoid receptors: Implications for multiple roles of heat shock protein 90. Mol Endocrinol 13: 355-365, 1999

    Article  PubMed  Google Scholar 

  106. Sebastian T, Thampan RV: Nuclear estrogen receptor II(nERII) is involved in the estrogen dependent ribonucleoprotein transport in the goat uterus: I Localization of nERII in snRNP. J Cell Biochem 84: 217-226, 2002a

    Article  PubMed  Google Scholar 

  107. Sebastian T, Thampan RV: Nuclear estrogen receptor II(nERII) is involved in the estrogen dependent ribonucleoprotein transport in thegoat uterus: II Isolation and characterization of three snRNP proteins which bind to nERII. J Cell Biochem 84: 226-236, 2002b

    Google Scholar 

  108. Nirmala PB, Thampan RV: Ubiquitination of the rat uterine estrogen receptor: Dependence on estradiol. Biochem Biophys Res Commun 213: 24-31, 1995c

    Article  PubMed  Google Scholar 

  109. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW: Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96: 1858-1862, 1999

    Article  PubMed  Google Scholar 

  110. Thampan RV: The nuclear binding of estradiol stimulates ribonucleoprotein transport in the rat uterus. J Biol Chem 260: 5420-5426, 1985

    PubMed  Google Scholar 

  111. Thampan RV: Estradiol-stimulated nuclear ribonucleoprotein transport in the rat uterus: A molecular basis. Biochemistry 27: 5019-5026, 1988

    Article  PubMed  Google Scholar 

  112. Vazquez-Nin GH, Echeverria OM, Fakan S, Traish AM, Wotiz HH, Martin TE: Immunoelectron microscopic localization of estrogen receptor on pre-mRNA containing constituents of rat uterine cell nuclei. Exp Cell Res 192: 396-404, 1991

    Article  PubMed  Google Scholar 

  113. Heap RB, Symons AM, Watkins JC: Steroids and their interactions with phospholipids: Solubility, distribution co-efficient and effect on potassium permeability of liposomes. Biochim Biophys Acta 218: 482-495, 1970

    PubMed  Google Scholar 

  114. Lawrence DK, Gill EW: Structurally specific effects of some steroid anesthetics on spin labeled liposomes. Mol Pharmacol 11: 280-286, 1974

    Google Scholar 

  115. Karthikeyan N, Thampan RV: Plasma membrane is the primary site of localization of the non-activated estrogen receptor in the goat uterus: Hormone binding causes receptor internalization. Arch Biochem Biophys 325: 47-57, 1996

    Article  PubMed  Google Scholar 

  116. Jaya, P, Thampan RV: A nuclear transforming factor that converts the goat uterine non-activated estrogen receptor (naER) to nuclear estrogen receptor II (nER-II). Prot Exp Purific 20: 347-356, 2000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebastian, T., Sreeja, S. & Thampan, R.V. Import and export of nuclear proteins: Focus on the nucleocytoplasmic movements of two different species of mammalian estrogen receptor. Mol Cell Biochem 260, 91–102 (2004). https://doi.org/10.1023/B:MCBI.0000026060.81570.35

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000026060.81570.35

Navigation