Skip to main content

Advertisement

Log in

Inhibition of ubiquitous mitochondrial creatine kinase expression in HeLa cells by an antisense oligodeoxynucleotide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Antisense strategy has been used to inhibit the synthesis of the human ubiquitous mitochondrial creatine kinase (Mi-CK) in HeLa cells. Indeed, elevated levels of Mi-CK in the serum of some cancer patients seem to be an adverse pronostic indicator (for refs see Wallimann T and Hemmer W, Mol Cell Biochem 133/134: 193-220, 1994). A phosphorothioate oligonucleotide, complementary to the second intron-exon splice junction site of the human ubiquitous Mi-CK pre-mRNA was shown to inhibit Mi-CK synthesis by 80% without modifying F1-ATPase β subunit expression or hampering HeLa cell growth. This inhibition was correlated to a decrease of the Mi-CK mRNA level that could be determined quantitatively after amplification of reverse transcription products (RT) in the presence of varying concentrations of internal standard competitors. This study also demonstrated that the Mi-CK mRNA copy number was much lower in HeLa cells than that of the cytosolic creatine kinase isoform, B-CK. The antisense-induced decrease in Mi-CK mRNA and protein level influenced neither the expression of B-CK which uses up the phosphocreatine produced by Mi-CK during the phosphocreatine shuttle, nor that of another nuclear encoded mitochondrial gene, the F1-ATPase subunit which provides ATP to Mi-CK. In conclusion, an elevated Mi-CK expression is not required for cancer cell growth and therefore, Mi-CK is not a significant limiting factor for the growth of the cancer cells which contain it. In addition, a decrease in Mi-CK synthesis does not induce a change in the expression of mitochondrial F1-ATPase which provides ATP to Mi-CK or in the expression of cytosolic B-CK which is involved together with Mi-CK in the phosphocreatine shuttle. Therefore, the use of the phosphocreatine shuttle as a process mandatory for the active growth of some cancer cells is questionned. (Mol Cell Biochem 167: 113-125, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular homeostasis. Biochem J 281: 21-40, 1992

    Google Scholar 

  2. Eppenberger HM, Eppenberger M, Richterich R, Acbi H: The ontogeny of creatine kinase isoenzymes. Develop Biol 10: 1-16, 1964

    Google Scholar 

  3. Watts DC: Creatine kinase (adenosine 5'-triphosphate creatine phosphotransferase). In: P.D. Boyer (ed.). The Enzymes, vol 8. New York: Academic, 1973, pp 383-455

    Google Scholar 

  4. Haas RC, Korenfeld C, Zhang ZF, Perryman B, Roman D, Strauss AW: Isolation and characterization of the gene and cDNA encoding human mitochondrial creatine kinase. J Biol Chem 264: 2890-2897, 1989

    Google Scholar 

  5. Haas RC, Strauss AW: Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem 265: 6921-6927, 1990

    Google Scholar 

  6. Klein SC, Haas RC, Perryman MB, Billadello JJ, Strauss AW: Regulatory element analysis and structural characterization of the human sarcomeric mitochondrial creatine kinase gene. J Biol Chem 266: 18058-18065, 1991

    Google Scholar 

  7. Payne RM, Haas RC, Strauss AW: Structural characterization and tissue specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochim Biophys Acta 1089: 352-361, 1991

    Google Scholar 

  8. Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W: Structure of mitochondrial creatine kinase. Nature 381: 341-345, 1996

    Google Scholar 

  9. Scholte HR: The separation and enzymatic characterization of inner and outer membranes of rat-heart mitochondria. Biochim Biophys Acta 330: 283-293, 1973

    Google Scholar 

  10. Quemeneur E, Eichenberger D, Goldschmidt D, Vial C, Beauregard G, Potier M: The radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer. Biochem Biophys Res Commun 153: 1310-1314, 1988

    Google Scholar 

  11. Saks VA, Rosenshtraukh LV, Smimov VN, Chazov EI: Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56: 691-706, 1978

    Google Scholar 

  12. Bessman SP, Carpenter C: The creatine-creatine phosphate energy shuttle. Ann Rev Biochem 54: 831-862, 1985

    Google Scholar 

  13. Kammermeier H: Why do cells need phosphocreatine and a phosphocreatine shuttle? J Mol Cardiol 19: 115-118, 1987

    Google Scholar 

  14. Seraydarian M, Vial C: Intracellular energy transport in heart cell cultures; In: A. Pinson (ed.). ‘The Heart cell in culture’ CRC Press, Boca Raton Florida, 1987, vol 2, pp 40-61

    Google Scholar 

  15. Mahler M: Progressive loss of mitochondrial creatine kinase activity in muscular dystrophy. Biochem Biophys Res Common 88: 895-906, 1979

    Google Scholar 

  16. Farrants GW, Hovmöller S, Stadhouders AM: Two types of mitochondrial crystals in diseased human skeletal fibers. Muscle Nerve 11: 45-55, 1988

    Google Scholar 

  17. Eppenberger-Eberhardt M, Riesinger I, Messerli M, Schwarb P, Müller M, Eppenberger HM, Wallimann T: Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase. J Cell Biol 113: 289-302, 1991

    Google Scholar 

  18. Stadhouders AM, Jap PH, Winkler HP, Eppenberger HM, Wallimann T: Mitochondrial creatine kinase: a major constituent of pathological inclusions seen in mitochondrial myopathies. Proc Natl Acad Sci USA 91: 5089-5093, 1994

    Google Scholar 

  19. Fontanet HL, Trask RV, Haas RC, Strauss AW, Abendshein DR, Billadello JJ: Regulation of expression of M, B, and mitochondrial creatine kinase mRNAs in left ventricle after pressure overload in rats. Circ Res 68: 1007-1012, 1991

    Google Scholar 

  20. Ingwall JS, Fossel ET: Changes in the creatine kinase system in the hypertrophied myocardium of the dog and rat. In: NR Alpert (ed). Myocardial Hypertrophy and Failure. Persp Cardiovasc Res. Raven Press, New York, 1983, vol 7, pp 601-617

    Google Scholar 

  21. Bittl JA, Ingwall JS: Intracellular high-energy phosphate transfer in normal and hypertrophied myocardium. Circulation 75 (suppl 1): 196-1101, 1987

    Google Scholar 

  22. Saks VA, Belikova YO, Kuznetsov AV: In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074: 302-311, 1991

    Google Scholar 

  23. Pratt R, Vallis LM, Lim CW, Chisnall WN: Mitochondrial creatine kinase cancer patients. Pathology 19: 162-165, 1987

    Google Scholar 

  24. Kanemitsu F, Kawanishi I, Mizushima J: A new creatine kinase found in mitochondrial extracts from malignant liver tissue. Clin Chim Acta 128: 233-240, 1983

    Google Scholar 

  25. Lin TZ, Shen JT, Lee Y-TN, Shohet SB: A typical cathode-migrating creatine kinase isozyme of a human breast carcinoma: a specific marker? Clin Chem 26: 1765, 1980

    Google Scholar 

  26. Okano K, Yamamoto K, Ohba Y, Matsumura K, Miyaji T: Source of elevated serum mitochondrial creatine kinase in patients with malignancy. Clin Chim Acta 169: 159-164, 1987

    Google Scholar 

  27. Wallimann T, Hemmer W: Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133/134: 193-220, 1994

    Google Scholar 

  28. Tsung SH: Creatine kinase activity and isozyme pattern in various normal tissues and neoplasms. Clin Chem 29: 2040-2043, 1983

    Google Scholar 

  29. Van Brussel E, Yang JJ, Seraydarian MW: Isoenzymes of creatine kinase in mammalian cell cultures. J Cell Physiol 116: 221-226, 1983

    Google Scholar 

  30. Becker S, Schneider F: Investigations on the function of creatine kinase in Ehrlich ascites tumor cells. Biol Chem Hoppe Seyler 370: 357-364, 1989

    Google Scholar 

  31. Lillie JW, O'Keefe M, Walinsky H, Hamlin A, Varban ML, Kaddurah-Daouk R: Cyclocreatine inhibits growth of a broad spectrum of cancer cells derived from solid tumors. Cancer Res 53: 3172-3178, 1993

    Google Scholar 

  32. Martin K, Winslow ER, Kaddurah-Daouk R: Cell cycle studies of cyclocreatine, a new anticancer agent. Cancer Res 54: 5160-5165, 1994

    Google Scholar 

  33. Van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, Ter Laak H, Wieringa B: Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74: 621-631, 1993

    Google Scholar 

  34. Ventura-Clapier R, Kuznetsov AV, D'Albis A, Van Deursen J, Wieringa B, Veksler VI: Muscle creatine kinase-deficient mice I-Alterations in myofibrillar function. J Biol Chem 270: 19914-19920, 1995

    Google Scholar 

  35. Veksler VI, Kuznetsov AV, Anflous K, Mateo P, Van Deursen J, Wieringa B, Ventura-Clapier R: Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue specific adaptation of the mitochondrial function. J Biol Chem 270: 19921-19929, 1995

    Google Scholar 

  36. Steeghs K, Oerlemans F, Wieringa B: Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochim Biophys Acta 1230: 130-138, 1995

    Google Scholar 

  37. Steeghs K, Peters W, Bruckwilder M, Croes H, Van Alewijk D, Wieringa B: Mouse ubiquitous mitochondrial creatine kinase: gene organisation and consequences from inactivation in mouse embryonic stem cells. DNA Cell Biol 14: 539-553, 1995

    Google Scholar 

  38. Zon G: Oligonucleotide analogues as potential chemotherapeutic agents. Pharmaceut Res 5: 539-549, 1988

    Google Scholar 

  39. Hélène C, Toulmé JJ: Specific regulation of gene expression by antisense, sense and antigen nucleic acids. Biochim Biophys Acta 1049: 99-125, 1990

    Google Scholar 

  40. Crooke ST: Antisense technology. Current Biology 2: 282-287, 1991

    Google Scholar 

  41. Crooke ST: Therapeutic applications of oligonucleotides. Ann Rev Pharmacol Toxicol 32: 329-376, 1992

    Google Scholar 

  42. Becker D, Meier CB, Herlyn M: Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. The EMBO J 8: 3685-3691, 1989

    Google Scholar 

  43. Morrison RS: Suppression of basic fibroblast growth factor expression by antisense oligodeoxynucleotides inhibits the growth of transformed human astrocytes. J Biol Chem 266: 728-734, 1991

    Google Scholar 

  44. Stein CA, Subasinghe C, Shinozuka K, Cohen S: Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16: 3209-3221, 1988

    Google Scholar 

  45. Moser HE, Dervan PB: Sequence-specific cleavage of double helical DNA triple helix formation. Science 238: 645-650, 1987

    Google Scholar 

  46. Sun JS, Giovannangeli C, François JC, Kurfurst R, Motenay-Garestier T, Asseline U, Saison-Behmoaras T, Thuong NT, Hélène C: Triple-helix formation by alpha oligodeoxynucleotide — intercalator conjugates. Proc Natl Acad Sci USA 88: 6023-6027, 1991

    Google Scholar 

  47. Gregoriev M, Praseuth D, Guiyesse AL, Robin P, Thuong NT, Hélène C, Harel-Bellan A: Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites. Proc Natl Acad Sci USA 90: 3501-3505, 1993

    Google Scholar 

  48. Ch'ng JL, Mulligan RC, Schimmel P, Holmes EW: Antisense RNA complementary to 3' coding and non coding sequences of creatine kinase is a potent inhibitor of translation in vivo. Proc Natl Acad Sci 86: 10006-10010, 1989

    Google Scholar 

  49. Bouzidi MF, Enjolras N, Carrier H, Vial C, Lopez-Mediavilla C, Burt-Pichat B, Couton F, Godinot C: Variations of muscle mitochondrial creatine kinase activity in mitochondrial diseases. Biochim Biophys Acta 1316: 61-71, 1996

    Google Scholar 

  50. Moradi-Ameli M, Julliard M, Godinot C: Inhibition of mitochondrial F1-ATPase activity by an anti-α subunit monoclonal antibody which modifies interaction between catalytic and regulatory sites. J Biol Chem 264: 1361-1367, 1989

    Google Scholar 

  51. Celi FS, Zenilman ME, Shuldiner AR: A rapid and versatile method to synthetize internal standards for competitive PCR. Nucleic Acids Res, 21: 1047, 1993

    Google Scholar 

  52. Suggs SV, Wallace RB, Hirose T, Kawashima EH, Itakura K: Use of synthetic oligonucleotides as hybridisation probes: isolation of cloned cDNA sequences for human β2-microglobulin. Proc Natl Acad Sci USA 78: 6613-6617, 1981

    Google Scholar 

  53. Maxam AM, Gilbert W: A new method for sequencing DNA. Proc Natl Acad Sci USA 74: 560-564, 1977

    Google Scholar 

  54. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning. A laboratory manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory, 1989

    Google Scholar 

  55. Gililand G, Perrin S, Blanchard K, Bunn HF: Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci USA 87: 2725-2729, 1990

    Google Scholar 

  56. Piatak M, Ka-Cheung Luk Jr, Williams B, Lifson JD: Quantitative competitive chain reaction for accurate quantitation of HIV DNA and RNA species. Biotechniques 14: 70-80, 1993

    Google Scholar 

  57. DeLuca M, Hall N, Rice R, Kaplan NO: Creatine kinase isozymes in human tumors. Biochem Biophys Res Commun 99: 189-195, 1981

    Google Scholar 

  58. Gazdar AF, Zweig MH, Carney DN, Van Steirteghen AC, Baylin SB, Minna JD: Levels of creatine kinase and its BB isoenzyme in lung cancer specimens and cultures. Cancer Res 41: 2773-2777, 1981

    Google Scholar 

  59. Shatton JB, Morris HP, Weihouse S: Creatine kinase activity and isoenzyme composition in normal tissues and neoplasms of rats and mice. Cancer Res 39: 492-501, 1979

    Google Scholar 

  60. Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger HM: Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localisation, and structure-function relationships. J Biol Chem: 263 16942-16953, 1988

    Google Scholar 

  61. Dallman M, Montgomery R, Larsen C, Wanders A, Wells A: Cytokine gene expression: analysis using northern, polymerase chain reaction and in situ hybridization. Immunol Rev 19: 163-179, 1991

    Google Scholar 

  62. Corral-Debrinsky M, Stepien G, Shoffner JM, Lott M, Kanter K, Wallace DC: Hypoxemia is associated with mitochondrial damage and gene induction. JAMA 266: 1812-1816, 1991

    Google Scholar 

  63. Foley KP, Engel JD: Individual stage selector element mutations lead to reciprocal changes in β versus ε globin gene switching. Genes Dev 6: 730-744, 1992

    Google Scholar 

  64. Kulka M, Smith CC, Aurelian L, Fishelevich R, Meade K, Miller P, Ts'o P: Site specificity of the inhibitory effects of oligo(nucleoside methylphosphonate)s complementary to the acceptor splice junction of herpes simplex virus type 1 immediate early mRNA 4. Proc Natl Acad Sci USA 86: 6868-6872, 1989

    Google Scholar 

  65. Ceruzi M, Draper K: The intracellular and extracellular fate of oligodeoxynucleotides in tissue culture systems. Nucleosides Nucleotides 8: 815, 1989

    Google Scholar 

  66. Neckers L, Whitesell L: Antisense technology: biological utility and practical considerations. Am J Physiol 265: L1-L12, 1993

    Google Scholar 

  67. Degols G, Leonetti JP, Mechti N, Lebleu B: Antiproliferative effects of antisense oligonucleotides directed to the RNA of c-myc oncogene. Nucleic Acids Res 19: 945-948, 1991

    Google Scholar 

  68. Becker D, Meier CB, Herlyn M: Proliferation of malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. The EMBO J 8: 3865-3891, 1989

    Google Scholar 

  69. Cazenave C, Stein A, Loreau N, Thuong NT, Neckers LM, Subasinghe C, Hélène C, Cohen JS, Toulmé JJ: Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res 17: 4255-4273, 1989

    Google Scholar 

  70. Sarin PS, Agrawals, Civeira MP, Goodchild J, Ikeuchi T, Zamecnik PC: Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleotide methylphosphonates. Proc Natl Acad Sci USA 85: 7448-7451, 1988

    Google Scholar 

  71. Van Deursen J, Wieringa B: Targeting of the creatine kinase M gene in embryonic stem cells using isogenic and nonisogenic vectors. Nucleic Acids Res 20: 3815-3820, 1992

    Google Scholar 

  72. Payne RM, Friedman DL, Grant JW, Perryman MB, Strauss AW: Creatine kinase isoenzymes are highly regulated during pregnancy in rat uterus and placenta. Am J Physiol 265: E624-E635, 1993

    Google Scholar 

  73. Bustamante E, Morris HP, Pedersen PL: Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 256: 8699-8704, 1981

    Google Scholar 

  74. Mathupala SJ, Rempel A, Pedersen PL: Glucose catabolism in cancer cells, isolation, sequence and activity of the promoter for type II hexokinase. J Biol Chem 270: 16918-16925, 1995

    Google Scholar 

  75. Bennett MR, Anglin S, McEwan JR, Jagoe R, Newby AC, Evan GI: Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest 93: 820-828, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enjolras, N., Godinot, C. Inhibition of ubiquitous mitochondrial creatine kinase expression in HeLa cells by an antisense oligodeoxynucleotide. Mol Cell Biochem 167, 113–125 (1997). https://doi.org/10.1023/B:MCBI.0000009692.67331.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009692.67331.d3

Navigation