Skip to main content
Log in

Almost Sure Comparisons for First Passage Times of Diffusion Processes through Boundaries

  • Published:
Methodology And Computing In Applied Probability Aims and scope Submit manuscript

Abstract

Conditions on the boundary and parameters that produce ordering in the first passage time distributions of two different diffusion processes are proved making use of comparison theorems for stochastic differential equations. Three applications of interest in stochastic modeling are presented: a sensitivity analysis for diffusion models characterized by means of first passage times, the comparison of different diffusion models where first passage times represent an important feature and the determination of upper and lower bounds for first passage time distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. D. Assaf, M. Shaked, and J. G. Shanthikumar, “1st passage times with PFR densities,” J. Appl. Prob. vol. 22 pp. 185–196, 1985.

    Google Scholar 

  • C. A. Ball and A. Roma, “A jump diffusion model for European monetary system,” Journal of International Money and Finance vol. 12, pp. 475–492, 1993

    Google Scholar 

  • A. Di Crescenzo and A. G. Nobile, “Diffusion approximation to a queueing system with time-dependent arrival and service rates,” Queueing Systems vol. 19 pp. 41–62, 1995.

    Google Scholar 

  • A. Di Crescenzo and L. M. Ricciardi, “Comparing failure times via diffusion models and likelihood ratio ordering,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences vol. E79-A pp. 1429–1432, 1996.

    Google Scholar 

  • A. Di Crescenzo and L. M. Ricciardi, “Comparing first-passage-times for semi-Markov skip-free processes,” Stat. Prob. Lett. vol. 30 pp. 247–256, 1996.

    Google Scholar 

  • A. Di Crescenzo and L. M. Ricciardi, “On a discrimination problem for a class of stochastic processes with ordered first-passage times,” Appl. Stoch. Models Bus. Ind. vol. 17 pp. 205–219, 2001.

    Google Scholar 

  • L. I. Gal'čuk and M. H. A. Davis, “A note on a comparison theorem for equations with different diffusions,” Stochastics vol. 6 pp. 147–149, 1982.

    Google Scholar 

  • V. Giorno, P. Lánský, A. G. Nobile, and L. M. Ricciardi, “Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death approach,” Biol. Cybern. vol. 58 pp. 387–404, 1988.

    Google Scholar 

  • V. Giorno, A. G. Nobile, L. M. Ricciardi, and S. Sato, “On the evaluation of first-passage-time probability densities via non-singular integral equations,” Adv. Appl. Prob. vol. 21 pp. 20–36, 1989.

    Google Scholar 

  • M. T. Giraudo and L. Sacerdote, “An improved technique for the simulation of first passage times for diffusion processes,” Commun. Statist.-Simula. vol. 28 pp. 1135–1163, 1999.

    Google Scholar 

  • M. T. Giraudo, L. Sacerdote, and C. Zucca, “A MonteCarlo method for the simulation of first passage times of diffusion processes,” Meth. Comp. Appl. Prob. vol. 3 pp. 215–231, 2001

    Google Scholar 

  • B. Hajek, “Mean stochastic comparison of diffusions,” Z. Wahrscheinlichkeits-theorie verw. Gebiete vol. 68 pp. 315–329, 1985.

    Google Scholar 

  • Z. Y. Huang, “A comparison theorem for solutions of stochastic differential equations and its applications,” Proc. A.M.S. vol. 91 pp. 611–617, 1984.

    Google Scholar 

  • N. Ikeda and S. Watanabe, “Stochastic differential equations and diffusion processes,” North Holland Math. Lib. 1989.

  • S. Karlin and H. M. Taylor, A Second Course in Stochastic Processes, Academic Press, San Diego, 1981.

    Google Scholar 

  • P. Lánský, L. Sacerdote, and F. Tomassetti, “On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity,” Biol. Cybern. vol. 73 pp. 457–465, 1995.

    Google Scholar 

  • S. Lee and J. Lynch, “Total positivity of Markov chains and the failure rate character of some first passage times,” Adv. Appl. Prob. vol. 29 pp. 713–732, 1997.

    Google Scholar 

  • H. J. Li and M. Shaked, “On the first passage times for Markov-processes with monotone convex transition kernels,” Stoch. Proc. Appl. vol. 58 pp. 205–216, 1995.

    Google Scholar 

  • H. J. Li and M. Shaked, “Ageing first-passage times of Markov processes: A matrix approach,” J. Appl. Prob. vol. 34 pp. 1–13, 1997.

    Google Scholar 

  • S. Nakao, “Comparison theorems for solutions of one-dimensional stochastic differential equations,” Proceedings of the Second Japan-USSR Symposium on Probability Theory. Lecture Notes in Math., vol. 330, pp. 310–315, Springer: Berlin, 1973.

    Google Scholar 

  • A. G. Nobile, L. M. Ricciardi, and L. Sacerdote, “Exponential trends of first-passage-time densities for a class of diffusion processes with steady-state distribution,” J. Appl. Prob. vol. 22 pp. 611–618, 1985.

    Google Scholar 

  • G. L. O'Brien, “A new comparison theorem for solutions of stochastic differential equations,” Stochastics vol. 3 pp. 245–249, 1980.

    Google Scholar 

  • Y. Ouknine, “Comparison et non-confluence des solutions d'équations differentielles stochastiques unidimensionnelles,” Probab. Math. Statist. vol. 11 pp. 37–46, 1990.

    Google Scholar 

  • L. M. Ricciardi, Diffusion Processes and Related Topics in Biology. Lecture Notes in Biomathematics vol. 14, Springer Verlag: Berlin, 1977.

    Google Scholar 

  • L. M. Ricciardi and L. Sacerdote, “The Ornstein-Uhlenbeck process as a model for neuronal activity,” Biol. Cybern. vol. 35 pp. 1–9, 1979.

    Google Scholar 

  • L. M. Ricciardi and S. Sato, Diffusion processes and first-passage-time problems, Lectures in Applied Mathematics and Informatics, L. M. Ricciardi, Ed. Manchester University Press: Manchester, 1990

    Google Scholar 

  • L. Sacerdote and C. E. Smith, “A qualitative comparison of some diffusion models for neural activity via stochastic ordering,” Biol. Cybern. vol. 83 pp. 543–551, 2000.

    Google Scholar 

  • L. Sacerdote and C. E. Smith, “New parameter relationships determined via stochastic ordering for spike activity in a reversal potential neural model,” Biosystems vol. 58 pp. 59–65, 2000.

    Google Scholar 

  • S. Sato, “On the moments of the firing interval of the diffusion approximated model neuron,” Math. Biosci. vol. 39 pp. 53–70, 1978.

    Google Scholar 

  • M. Shaked and J. G. Shanthikumar, “On the 1st passage times of pure jump-processes,” J. Appl. Prob. vol. 20 pp. 427–446, 1988.

    Google Scholar 

  • M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic Press, Inc.: Boston, 1994.

    Google Scholar 

  • C. E. Smith, “A note on neuronal firing and input variability,” J. Theor. Biol. vol. 154 pp. 271–275, 1992.

    Google Scholar 

  • A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Pub. Comp., Inc.: MA, 1965.

    Google Scholar 

  • T. Yamada, “On a comparison theorem for solutions of stochastic differential equations and its applications,” J. Math. Kyoto Univ. vol. 13-3 pp. 497–512, 1973.

    Google Scholar 

  • T. Yamada and Y. Ogura, “On the strong comparison theorems for solutions of stochastic differential equations,” Z. Wahrsch. Verw. Gebiete vol. 56 pp. 3–19, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacerdote, L., Smith, C.E. Almost Sure Comparisons for First Passage Times of Diffusion Processes through Boundaries. Methodology and Computing in Applied Probability 6, 323–341 (2004). https://doi.org/10.1023/B:MCAP.0000026563.27820.ff

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCAP.0000026563.27820.ff

Navigation