Skip to main content
Log in

Abstract

A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis–Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. A. Barker, “Monte Carlo calculations of the radial distribution functions for a proton-electron plasma,” Aust. J. Phys. vol. 18 pp. 119–133, 1965.

    Google Scholar 

  • B. P. Carlin and S. Chib “Bayesian model choice via MCMC,” J. Royal Statist. Society series B.57 pp. 473–484, 1995.

    Google Scholar 

  • W. M. Fitch, “Toward defining the course of evolution: minimum change for a specific tree topology,” Syst. Zool. vol. 20 pp. 406–416, 1971.

    Google Scholar 

  • A. F. Gelfand and A. F. M. Smith, “Sampling-based approaches to calculating marginal densities,” J. Am. Stat. Assoc. vol. 85 pp. 398–409, 1990.

    Google Scholar 

  • S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE T. Pattern Anal. vol. 6 pp. 721–741, 1984.

    Google Scholar 

  • P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika vol. 82 pp. 711–732, 1995.

    Google Scholar 

  • W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika vol. 57 pp. 97–109, 1970.

    Google Scholar 

  • J. P. Huelsenbeck and F. Ronquist, “Mr Bayes: Bayesian inference of phylogenetic trees,” Bioinformatics vol. 17 pp. 754–755, 2001.

    Google Scholar 

  • International Human Genome Sequencing Consortium, “Initial sequencing and analysis of the human genome,” Nature vol. 409 pp. 860–921, 2001.

    Google Scholar 

  • J. M. Keith, P. Adams, D. Bryant, D. P. Kroese, K. R. Mitchelson, D. A. E. Cochran, and G. H. Lala, “A simulated annealing algorithm for finding consensus sequences,” Bioinformatics vol. 18 pp. 1494–1499, 2002.

    Google Scholar 

  • J. M. Keith, P. Adams, D. Bryant, K. R. Mitchelson, D. A. E. Cochran, and G. H. Lala, “Inferring an original sequence from erroneous copies: a Bayesian approach,” in Yi-Ping Phoebe Chen (ed.), Proceedings of the 1st Asia-Pacific Bioinformatics Conference (APBC2003), Conferences in Research and Practice in Information Technology, vol. 19 pp. 23–28, 2003a.

  • J. M. Keith, P. Adams, D. Bryant, K. R. Mitchelson, D. A. E. Cochran, and G. H. Lala, “Inferring an original sequence from erroneous copies: two approaches,” Asia-Pacific BioTech News vol. 7 pp. 107–114, 2003.

    Google Scholar 

  • B. Larget and D. Simon, “Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees,” Mol. Biol. Evol. vol. 16 pp. 750–759, 1999.

    Google Scholar 

  • B. Mau and M. Newton, “Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo,” J. Comput. Graph. Stat. vol. 6 pp. 122–131, 1997.

    Google Scholar 

  • N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys. vol. 21 pp. 1087–1092, 1953.

    Google Scholar 

  • W. J. Murphy, E. Eizirik, S. J. O'Brien, O. Madsen, M. Scally, C. J. Douady, E. Teeling, O. A. Ryder, M. J. Stanhope, W. W. de Jong, and M. S. Springer, “Resolution of the early placental mammal radiation using Bayesian phylogenetics,” Science vol. 294 pp. 2348–2351.

  • J. L. Oliver, P. Bernaolo-Galvin, P. Carpena, and R. Roman-Roldan, “Isochore chromosome maps of eukaryotic genomes,” Gene vol. 276 pp. 47–56, 2001.

    Google Scholar 

  • R. D. M. Page, “TREEVIEW: An application to display phylogenetic trees on personal computers,” Computer Applications in the Biosciences vol. 12 pp. 357–358, 1996.

    Google Scholar 

  • D. B. Phillips and A. F. M. Smith, “Bayesian model comparison via jump diffusions,” in W. R. Gilks, S. T. Richardson, and D. J. Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, Chapman and Hall, 1995.

  • Z. Yang and B. Rannala “Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method,” Mol. Biol. Evol. vol. 14 pp. 717–724, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keith, J.M., Kroese, D.P. & Bryant, D. A Generalized Markov Sampler. Methodology and Computing in Applied Probability 6, 29–53 (2004). https://doi.org/10.1023/B:MCAP.0000012414.14405.15

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCAP.0000012414.14405.15

Navigation