Skip to main content
Log in

Studies of α- and βL-Crystallin Complex Formation in Solution at 60°C

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Studies of molecular mechanisms of chaperone-like activity of α-crystallin became an active field of research over last years. However, fine interactions between α-crystallin and the damaged protein and their complex organization remain largely uncovered. Complexation between α- and βL-crystallins was studied during thermal denaturation of βL-crystallin at 60°C using small-angle X-ray scattering (SAXS), light scattering, gel-permeation chromatography, and electrophoresis. A mixed solution of α- and βL-crystallins at concentrations about 10 mg/ml incubated at 60°C was found to contain their soluble complexes with a mean radius of gyration ∼14 nm, mean molecular mass ∼4 MDa and maximal size over 40 nm. In pure βL-crystallin solution, no complexes were observed at 60°C. In SAXS studies, transitions in the α-crystallin quaternary structure at 60°C were shown to occur and result in doubling of the molecular weight. This suggests that during the temperature-induced denaturation of βL-crystallin it binds with modified α-crystallin or, alternatively, βL-crystallin complexation and α-crystallin modifications are concurrent. Estimates of the α-βL-crystallin complex size and relative contents of α- and α-βL-crystallins in the complex suggest that several α-crystallin molecules are involved in complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Molecular and Cellular Biology of the Eye Lens. 1981. Ed. Bloemendal H. N.Y.: Wiley.

    Google Scholar 

  2. Harding J.J. 1997. Lens. In: Biochemistry of the Eye. Ed. Harding J.J. London: Chapman and Hall, pp. 94-135.

    Google Scholar 

  3. Bloemendal H. 1982. Lens proteins. CRC Critical. Rev. Biochem. 12, 1-39.

    Google Scholar 

  4. Graw J. 1997. The crystallins: genes, proteins and diseases. Biol. Chem. 378, 1331-1348.

    Google Scholar 

  5. Bloemendal M., Bloemendal H. 1995. The isolation of lens crystallins using lens liquid as the solvent. Exp. Eye Res. 61, 757-761.

    Google Scholar 

  6. Horwitz J. 2003. Alpha-crystallin. Exp. Eye Res. 76, 145-153.

    Google Scholar 

  7. Horwitz J. 1992. α-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA. 89, 10449-10453.

    Google Scholar 

  8. Wang K., Spector A. 1994. The chaperone activity of bovine α-crystallin. J. Biol. Chem. 269, 13601-13608.

    Google Scholar 

  9. Borkman R.F., Knight G., Obi B. 1996. The molecular chaperone α-crystallin inhibits UV-induced protein aggregation. Exp. Eye Res. 62, 141-148.

    Google Scholar 

  10. Wang K., Spector A. 1995. α-crystallin can act as a chaperone under conditions of oxidative stress. Invest. Ophtham. Vis. Sci. 36, 311-321.

    Google Scholar 

  11. Abgar S., Yevlampieva N., Aerts T., Vanhoudt J., Clauwaert J. 2000. Chaperone-like activity of bovine lens α-crystallin in the presence of dithiothreitol-destabilized proteins. Biochem. Biophys. Res. Commun. 276, 619-625.

    Google Scholar 

  12. Wang K. 2001. α-B-and α-A-crystallin prevent irreversible acidification-induced protein denaturation. Biochem. Biophys. Res. Commun. 287, 642-647.

    Google Scholar 

  13. Rao P.V., Huang Q., Horwitz J., Zigler J.S. 1995. Evidence that α-crystallin prevents non-specific protein aggregation in the intact eye lens. Biochim. Biophys. Acta. 1245, 439-447.

    Google Scholar 

  14. Ostrovsky M. A. 2002. Molecular mechanisms of light-induced damage of the eye structure and preventive measures. In: Clinical Physiology of Vision. Eds. Shamshinov A.M., Yakovlev A.A., Romanov E.B. Moscow: “MBN” Research Medical Company.

    Google Scholar 

  15. Ostrovsky M.A., Sergeev Y.V., Atkinson D.B., Soustov L.V., Hejtmancik J.F. 2002. Comparison of ultraviolet induced photo-kinetics for lens-derived and recombinant γ-crystallins. Molecular Vision. 8, 72-78.

    Google Scholar 

  16. Boyle D., Gopalakrishnan S., Takemoto L. 1993. Localization of the chaperone binding site. Biochem. Biophys. Res. Commun. 192, 1147-1154.

    Google Scholar 

  17. Boyle D., Takemoto L. 1994. Characterization of the α-γ and α-β complex: evidence for an in vivo functional role of α-crystallin as a molecular chaperone. Exp. Eye Res. 58, 9-16.

    Google Scholar 

  18. MacRae T.H. 2000. Structure and function of small heat shock/α-crystallin proteins: established concepts and emerging ideas. CMLS Cell. Mol. Life Sci. 57, 899-913.

    Google Scholar 

  19. Guinier A., Fournet G. 1955. Small-Angle Scattering of X-rays. N.Y.: Wiley & Sons.

    Google Scholar 

  20. Feigin L.A., Svergun D.I. 1987. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: Plenum Press.

    Google Scholar 

  21. Krivandin A.V., Muranov K.O., Ostrovsky M.A. 2001. III National Conference on X-Ray, Synchrotron Radiation, Neutron and Electron Applications in Material Research. Moscow. Abstracts, p. 93.

  22. Van den Oetelaar P.J.M., Clauwaert J., van Laethem M., Hoenders H.J.J. 1985. The influence of isolation conditions on the molecular weight of bovine α-crystallin. J. Biol. Chem. 260, 14030-14034.

    Google Scholar 

  23. Kirillov V.I. 1981. An interface for porting of digital devices to the computer by means of HP-IB trunk. Pribory i Tekhnika Experimenta. 4, 89-92.

    Google Scholar 

  24. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685.

    Google Scholar 

  25. Vasilyev S.E., Donets D.E., Zanevsky Yu.V., Ivanov A.B., Smykov L.P., Cheremuhina G.A., Chernenko S.P. 1995. An automated one-coordinate X-ray detector. Pribory i Tekhnika Experimenta. 2, 172-177.

    Google Scholar 

  26. Franks A. 1958. Some developments and applications of microfocus X-ray diffraction techniques. Brit. J. Appl. Phys. 9, 349-352.

    Google Scholar 

  27. Shchedrin B.M., Feigin L.A. 1966. Collimation correction in small-angle X-ray scattering. Kristallografiya. 11, 159-163.

    Google Scholar 

  28. Svergun D.I., Semenyuk A.V. 1987. A general approach to process small-angle scattering data. Dokl. Akad. Nauk SSSR. 297, 1373-1377.

    Google Scholar 

  29. Svergun D.I. 1992. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495-503.

    Google Scholar 

  30. Siezen R.J., Berger H. 1978. The quaternary structure of bovine a-crystallin. Size and shape studies by sedimentation, small-angle X-ray scattering and quasi-elastic light scattering. Eur. J. Biochem. 91, 397-405.

    Google Scholar 

  31. Tardieu A., Laporte D., Lichino P., Krop B., Delae M. 1986. Calf lens a-crystallin quaternary structure. A three-layer tetrahedral model. J. Mol. Biol. 192, 711-724.

    Google Scholar 

  32. Weinreb O., van Rijk A., Dovrat A., Bloemendal H. 2000. In vitro filament-like formation upon interaction between lens α-crystallin and β L-crystallin promoted by stress. Invest. Ophthalm. Vis. Sci. 41, 3893-3897.

    Google Scholar 

  33. Putilina T., Skouri-Panet F., Prat K., Lubsen N. H., Tardieu A. 2003. Subunit exchange demonstrates a differential chaperone activity of calf a-crystallin toward β LOW-crystallin and individual γ-crystallins. J. Biol. Chem. 278, 13747-13756.

    Google Scholar 

  34. Raman B., Rao C.M. 1997. Chaperone-like activity and temperature-induced structural changes of alpha-crystallin. J. Biol Chem. 272, 23 559-23 564.

    Google Scholar 

  35. Burgio M.R., Bennett P.M, Koretz J.F. 2001. Heat-induced quaternary transitions in hetero-and homopolymers of a-crystallin. Molecular Vision. 7, 228-233.

    Google Scholar 

  36. Das K.P., Surewicz W.K.1995. Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett. 369, 321-325.

    Google Scholar 

  37. Surewicz W.K., Olesen P.R. 1995. On the thermal stability of alpha-crystallin: a new insight from infrared spectroscopy. Biochemistry. 34, 9655-9660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivandin, A.V., Muranov, K.O. & Ostrovsky, M.A. Studies of α- and βL-Crystallin Complex Formation in Solution at 60°C. Molecular Biology 38, 447–458 (2004). https://doi.org/10.1023/B:MBIL.0000032218.92543.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MBIL.0000032218.92543.f3

Navigation