Skip to main content
Log in

Thermostable Alkaline Phosphatase of Bacterium Meiothermus ruber: Gene Cloning, Expression in Escherichia coli, and Biochemical Characterization of the Recombinant Protein

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The Meiothermus ruber alkaline phosphatase gene was cloned, expressed in Escherichia coli cells, and sequenced. The enzyme precursor, including the putative signal peptide, was shown to consist of 503 residues (deduced molecular mass 54,229 Da). The recombinant enzyme showed the maximal activity at 60–65°C, pH 11.0, K M = 0.055 mM with p-nitrophenyl phosphate. The enzyme proved to be moderately thermostable, retaining 50% activity after 6 h incubation at 60°C and being completely inactivated in 2 h at 80°C. In substrate specificity assays, the highest activity was observed with p-nitrophenyl phosphate and dATP. Vanadate, inorganic phosphate, and SDS were inhibitory, while thiol-reducing agents had virtually no effect. The enzyme activity strongly depended on exogenous Mg2+ and declined in the presence of EDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fernley H.N. 1971. Mammalian alkaline phosphatases. In: Enzymes. Boyer P.D. Ed. N.Y.: Acad. Press, 4, 417–447.

    Google Scholar 

  2. Bradshaw R.A., Cancedda F., Ericsson L.H., Neumann P.A., Piccoli S.P., Schlesinger M.J., Shriefer K., Walsh K.A. 1981. Amino acid sequence of Escherichia coli alkaline phosphatase. Proc. Nat. Acad. Sci. USA. 78, 3473–3477.

    Google Scholar 

  3. Chang C.N., Kuang W.-J., Chen E.Y. 1986. Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli. Gene. 44, 121–125.

    Google Scholar 

  4. Kim E.E., Wyckoff H.W. 1989. Structure of alkaline phosphatases. Clinic. Chim. Acta. 186, 175–187.

    Google Scholar 

  5. Kim E.E., Wyckoff H.W. 1991. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J. Mol. Biol. 218, 449–464.

    Google Scholar 

  6. Jablonski E., Moomaw E.W., Tullis R.H., Ruth J.L. 1986. Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res. 14, 6115–6128.

    Google Scholar 

  7. Manson M.M. (ed). 1992. Immunochemical protocols. Totowa, NJ: Humana Press.

    Google Scholar 

  8. Yang T.T., Sinai P., Kitts P.A., Kain S.R. 1997. Quantification of gene expression with a secreted alkaline phosphatase reporter system. Biotechniques. 23, 1110–1114.

    Google Scholar 

  9. Kim Y.J., Park T.S., Kim H.K., Kwon S.T. 1997. Purification and characterization of a thermostable alkaline phosphatase produced by Thermus caldophilus GK24. J. Biochem. Mol. Biol. 30, 262–268.

    Google Scholar 

  10. Yeh M.F., Trela J.M. 1976. Purification and characterization of a repressible alkaline phosphatase from Thermus aquaticus. J. Biol. Chem. 251, 3134–3139.

    Google Scholar 

  11. Pantazaki A.A., Karagiorgas A.A., Liakopoulou-Kyriakides M., Kyriakidis D.A. 1998. Hyperalkaline and thermostable phosphatase in Thermus thermophilus. Appl. Biochem. Biotechnol. 75, 249–259.

    Google Scholar 

  12. Dong G., Zeikus J.G. 1997. Purification and characterization of alkaline phosphatase from Thermotoga neapolitana. Enzyme Microb. Technol. 21, 335–340.

    Google Scholar 

  13. Mori S., Okamoto M., Nishibori M., Ichimura M., Sakiyama J., Endo H. 1999. Purification and characterization of alkaline phosphatase from Bacillus stearothermophilus. Biotechnol. Appl. Biochem. 29, 235–239.

    Google Scholar 

  14. Yuan Y.Z., Sheng X.Y., Lu H.Y., Tong S., Mao Y.M. 1998. Thermostable alkaline phosphatase from Thermus sp. FD3041: cloning of the gene and expression in E. coli. Yi Chuan Xue Bao. 25, 375–380 (in Japanese).

    Google Scholar 

  15. Park T., Lee J.H., Kim H.K., Hoe H.S., Kwon S.T. 1999. Nucleotide sequence of the gene for alkaline phosphatase of Thermus caldophilus GK24 and characteristics of the deduced primary structure of the enzyme. FEMS Microbiol. Lett. 180, 133–139.

    Google Scholar 

  16. Nobre M.F., Truper H.G., Costa M.S. 1996. Transfer of Thermus ruber (Loginova et al. 1984), Thermus silvanus (Tenreiro et al. 1995) and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov. and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus. Int. J. Syst. Bacteriol. 46, 604–606.

    Google Scholar 

  17. Ferreira A.M., Wait R., Nobre M.F., Costa M.S. 1999. Characterization of glycolipids from Meiothermus spp. Microbiology. 145, 1191–1199.

    Google Scholar 

  18. Egorova L.A., Loginova L.G. 1984. Selection of a culture producing alkaline phosphatase in thermophilic bacteria of the genus Thermus. Mikrobiologiya. 53, 242-245.

    Google Scholar 

  19. Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208–218.

    Google Scholar 

  20. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd edn., Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  21. Yazynin S., Lange H., Mokros T., Deyev S., Lemke H. 1999. A new phagemid vector for positive selection of recombinants based on a conditionally lethal barnase gene. FEBS Lett. 452, 351–354.

    Google Scholar 

  22. Laemmli U.K. 1970. Cleavage of the structural proteins during the assembly of the head of the bacteriophage T4. Nature. 227, 680–685.

    Google Scholar 

  23. Baykov A.A., Evtushenko O.A., Avaeva S.M. 1988. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171, 266–270.

    Google Scholar 

  24. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    Google Scholar 

  25. Shine J., Dalgarno L. 1975. Determination of cistron specificity in bacterial ribosomes. Nature. 254, 34–38.

    Google Scholar 

  26. Becker G., Hengge-Aronis R. 2001. What makes an Escherichia coli promoter σ?s dependent? Role of the-13/-14 nucleotide promoter positions and region 2.5 of σ?s. Mol. Microbiol. 39, 1153–1165.

    Google Scholar 

  27. Kreil G. 1981. Transfer of proteins across membranes. Annu. Rev. Biochem. 50, 317–348.

    Google Scholar 

  28. Hulett F.M., Kim E.C., Bookstein C., Kapp N.V., Edwards C.W., Wyckoff H.W. 1991. Bacillus subtilis alkaline phosphatases III and IV. J. Biol. Chem. 266, 1077-1084.

    Google Scholar 

  29. Zappa S., Rolland J.L., Flament D., Gueguen Y., Boudrant J., Dietrich J. 2001. Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 67, 4504–4511.

    Google Scholar 

  30. Murphy J.E., Tibbitts T.T., Kantrowitz E.R. 1995. Mutation at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. J. Mol. Biol. 253, 604–617.

    Google Scholar 

  31. Murphy J.E., Xu X., Kantrowitz E.R. 1993. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase. J. Biol. Chem. 268, 21497–21500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurchenko, Y.V., Khromov, I.S., Budilov, A.V. et al. Thermostable Alkaline Phosphatase of Bacterium Meiothermus ruber: Gene Cloning, Expression in Escherichia coli, and Biochemical Characterization of the Recombinant Protein. Molecular Biology 37, 841–848 (2003). https://doi.org/10.1023/B:MBIL.0000008352.79909.f2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MBIL.0000008352.79909.f2

Navigation