Skip to main content
Log in

On the Strong Resolvent Convergence of the Schrödinger Evolution to Quantum Stochastics

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For a class of Hamiltonians including a model of the quantum detector of gravitational waves, we prove the strong convergence of the Schrödinger evolution to quantum stochastics. We show that the strong resolvent limit of a sequence of self-adjoint Hamiltonians is a symmetric boundary-value problem in Fock space, and the limit evolution of the partial trace with respect to the mixed state cannot be described by a unique equation of Lindblad type. On the contrary, each component of the mixed state generates a proper evolution law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Albeverio, W. Karwowski, and V. Koshmanenko, “Square powers of singularly perturbed operators, ” Math. Nachr., 173 (1995), 5–24.

    Google Scholar 

  2. A. M. Chebotarev, “Quantum stochastic differential equation is unitarily equivalent to a boundary problem for the Schrödinger equation, ” Mat. Zametki [Math. Notes], 61 (1997), no. 4, 612–622.

    Google Scholar 

  3. A. M. Chebotarev, Lectures on Quantum Probability, vol. 14, Sociedad Matemática Mexicana, Aportaciones Matemáticas, México, 2000.

    Google Scholar 

  4. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New-York, 1976.

    Google Scholar 

  5. A. M. Chebotarev, “What is a quantum stochastic differential equation from the point of view of functional analysis, ” Mat. Zametki [Math. Notes], 71 (2002), no. 3, 448–469.

    Google Scholar 

  6. R. L. Hudson and K. R. Parthasarathy, “Quantum Ito's formula and stochastic evolutions, ” Comm. Math. Phys., 93 (1984), no. 3, 301–323.

    Google Scholar 

  7. K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel, 1992.

    Google Scholar 

  8. P. A. Meyer, “Quantum Probability for Probabilists, ” in: Lecture Notes in Math, vol. 1338,Springer-Verlag, Berlin, 1993.

    Google Scholar 

  9. G. Lindblad, “On the generators of quantum dynamical semigroups, ” Comm. Math. Phys., 48 (1976), no. 2, 119–130.

    Google Scholar 

  10. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of n-level systems, ” J. Math. Phys., 17 (1976), no. 3, 821–825.

    Google Scholar 

  11. F. A. Berezin, The Method of Second Quantization, Academic Press, New-York, 1996.

    Google Scholar 

  12. A. M. Chebotarev, “On the symmetric form of the Hudson–Parthasarathy quantum stochastic equation, ” Mat. Zametki [Math. Notes], 60 (1996), no. 5, 726–750.

    Google Scholar 

  13. F. Fagnola, “On quantum stochastic differential equations with unbounded coefficients, ” Prob. Theory and Related Fields, 86 (1990), 501–516.

    Google Scholar 

  14. F. Fagnola, “Unitarity of solutions to quantum stochastic differential equations and conservativity of the associated semigroup, ” in: Quantum Probability and Related Topics, vol. VII, World Scientific, Singapore, 1992, pp. 139–148.

    Google Scholar 

  15. F. Fagnola, “Characterization of isometric and unitary weakly differentiable cocycles in Fock space, ” in: Quantum Probability and Related Topics, vol. VIII, World Scientific, Singapore, 1993, pp. 143–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chebotarev, A.M., Ryzhakov, G.V. On the Strong Resolvent Convergence of the Schrödinger Evolution to Quantum Stochastics. Mathematical Notes 74, 717–733 (2003). https://doi.org/10.1023/B:MATN.0000009005.56775.7c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATN.0000009005.56775.7c

Navigation