Skip to main content
Log in

Sign Regularity Conditions for Discontinuous Boundary-Value Problems

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For a multipoint discontinuous boundary-value problem with nonoscillating differential operator, we present an analog of the Kalafati conditions that ensure the sign regularity property, i.e., the property that the number of sign changes of the solution does not exceed the number of sign changes of the function on the right-hand side. The sign regularity property allows one to verify whether the spectrum of the corresponding spectral problem exhibits the Sturm properties (i.e., the reality, positiveness, and simplicity of eigenvalues, the alternation of zeros of eigenfunctions, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Sturm, “Mémoire sur les équations différentielles linéaires du second ordre, ” J. Math. Pures Appl., 1 (1836), 373–444.

    Google Scholar 

  2. O. D. Kellogg, “Orthogonal Function Sets Arising from Integral Equations, ” Amer. J. Math. (1918), no. 40, 145–154.

    Google Scholar 

  3. O. D. Kellogg, “Interpolation Properties of Orthogonal Sets of Solutions of Differential Equations, ” Amer. J. Math. (1918), no. 40, 220–234.

    Google Scholar 

  4. M. G. Krein, “Nonsymmetric oscillatory Green functions of ordinary differential operators, ” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 25 (1939), no. 8, 643–646.

    Google Scholar 

  5. M. G. Krein, “Oscillation theorems for ordinary differential operators of arbitrary order, ” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 25 (1939), no. 9, 717–720.

    Google Scholar 

  6. F. R. Gantmakher and M. G. Krein, Oscillatory Matrices and Kernels and Small Oscillations of Mechanical Systems [in Russian], Gostekhizdat, Moscow-Leningrad, 1950.

    Google Scholar 

  7. A. Yu. Levin and G. D. Stepanov, “One-dimensional boundary-value problems with operators that do not decrease the number of sign changes, ” Sibirsk. Mat. Zh. [Siberian Math. J.], 17 (1976), no. 3, 606–625, 17, no. 4, 813–830.

    Google Scholar 

  8. Yu. V. Pokornyi, “Spectrum of an interpolation boundary-value problem, ” Uspekhi Mat. N auk [Russian Math. Surveys], 32 (1977), no. 6, 198–199.

    Google Scholar 

  9. Yu. V. Pokornyi, “A nonclassical Vallée-Poussin problem, ” Differentsial'nye Uravneniya [Differential Equations], 14 (1978), no. 6, 1018–1027.

    Google Scholar 

  10. Yu. V. Pokornyi and K. P. Lazarev, “Some oscillation theorems for multipoint problems, ” Differentsial'nye Uravneniya [Differential Equations], 23 (1987), no. 4, 658–670.

    Google Scholar 

  11. V. Ya. Derr, “A generalized Vall´ee-Poussin problem, ” Differentsial'nye Uravneniya [Differential Equations], 23 (1987), no. 11, 1861–1872.

    Google Scholar 

  12. Yu. V. Pokornyi and I. Yu. Shurupova, “Oscillation properties of the spectrum of a boundary-value problem whose Green function changes sign, ” Ukrain. Mat. Zh. [Ukrainian Math. J.], 41 (1989), no. 11, 1521–1526.

    Google Scholar 

  13. A. L. Teptin, “Oscillation property of the kernel related to the Green function of a multipoint problem, ” Differentsial'nye Uravneniya [Differential Equations], 26 (1990), no. 2, 358–360.

    Google Scholar 

  14. A. V. Borovskikh, K. P. Lazarev, and Yu. V. Pokornyi, “Oscillation spectral properties of discontinuous boundary-value problems, ” Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.], 335 (1994), no. 4, 409–412.

    Google Scholar 

  15. A. V. Borovskikh and Yu. V. Pokornyi, “Chebyshev–Haar systems in the theory of discontinuous Kellogg kernels, ” Uspekhi Mat. Nauk [Russian Math. Surveys], 49 (1994), no. 3, 3–42.

    Google Scholar 

  16. A. V. Borovskikh, K. P. Lazarev, and Yu. V. Pokornyi, “Kellogg kernels in discontinuous problems, ” in: Optimal Control and Differential Equations, Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.], vol. 211, Nauka, Moscow, 1995, pp. 102–120.

    Google Scholar 

  17. V. Ya. Derr, “The sign of the Green function of a generalized Vallée-Poussin problem, ” in: Functional-Differential Equations [in Russian], Perm Pedagogical Institute, Perm, 1986, pp. 35–41.

    Google Scholar 

  18. G. D. Stepanov, “Effective criteria for strong sign regularity and the oscillation property of Green functions of two-point boundary-value problems, ” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 188 (1997), no. 11, 121–159.

    Google Scholar 

  19. G. Polya, “On the mean-value theorem corresponding to a given homogeneous differential equation, ” Trans. Amer. Math. Soc., 24 (1922), 312–324.

    Google Scholar 

  20. A. Yu. Levin, “Nonoscillation of the solutions to the equation 618–1, ” Uspekhi Mat. N auk [Russian Math. Surveys], 24 (1969), no. 2, 43–96.

    Google Scholar 

  21. P. Hartman, “On disconjugacy criteria, ” Proc. Amer. Math. Soc., 24 (1970), no. 2, 374–381.

    Google Scholar 

  22. G. Polya and G. Szego, Problems and Theorems in Analysis, vol. II, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  23. P. D. Kalafati, “Green functions of ordinary differential equations, ” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 26 (1940), no. 6, 535–539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovskikh, A.V. Sign Regularity Conditions for Discontinuous Boundary-Value Problems. Mathematical Notes 74, 607–618 (2003). https://doi.org/10.1023/B:MATN.0000008993.10681.c1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATN.0000008993.10681.c1

Navigation