Skip to main content
Log in

Eigenvalue-Dynamics off the Calogero–Moser System

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

By finding N(N− 1)/2 suitable conserved quantities, free motions of real symmetric N×N matrices X(t), with arbitrary initial conditions, are reduced to nonlinear equations involving only the eigenvalues of X – in contrast to the rational Calogero-Moser system, for which [X(0),Xd(0)] has to be purely imaginary, of rank one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnlind, J.and Hoppe, J.: Eigenvalue dynamics off Calogero-Moser, IHES Preprint P/03/41 (July 2003).

  2. Bordemann, M. and Hoppe, J.: Hamiltonian Reductions off Calogero-Moser, in preparation.

  3. Barucchi, G.and Regge, T.: Conformal properties of a class of exactly solvable N body systems in space dimension one, J.Math.Phys. 18 (1977), 1149.

    Google Scholar 

  4. Calogero, F.: Exactly solvable one-dimensional many-body problems, Lett.Nouvo Cimento 13 (1975), 411–416.

    Google Scholar 

  5. Calogero, F.: Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related 'solvable 'many-body problems, Nuovo Cimento 43B (1978), 117–241.

    Google Scholar 

  6. Calogero, F.: The 'neatest 'many-body problem amenable to exact treatment (a 'gold-fish '?), Physica D 152-153 (2001), 78–84.

    Google Scholar 

  7. Calogero, F.: A technique to identify solvable dynamical systems, and a solvable generalization of the goldfish many-body problem, Submitted to J.Math.Phys.

  8. Gibbons, J. and Hermsen, T.: A generalization of the Calogero-Moser system, Physica D 11 (1984), 337–348.

    Google Scholar 

  9. Haake, F.: Quantum Signatures of Chaos, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  10. Jevicki, A.: Nonperturbative collective field theory, Nuclear Phys.B 376 (1992), 75–98.

    Google Scholar 

  11. Moser, J.: Three integrable hamiltonian systems connected with isospectral deformations, Adv.Math. 16 (1975), 197–220.

    Google Scholar 

  12. Nekrasov, N.: In nite-dimensional algebras, many-body systems and gauge theories, In: Advances in the Mathematics Science, Moscow Seminar in Mathematical Physics, Amer. Math.Soc.Tranl. 191, Amer.Math.Soc., Providence 1999, pp.263–299.

    Google Scholar 

  13. Pechukas, P.: Distribution of energy eigenvalues in the irregular spectrum.Phys.Rev. Lett. 51 (1983), 943–946.

    Google Scholar 

  14. Ruijsenaars, S.and Schneider, H.: A new class of integrable systems and its relation to solitons, Ann.Phys.(NY ) 170 (1986), 370–405.

    Google Scholar 

  15. Wojciechowski, S.: An integrable marriage of the Euler equations with the Calogero-Moser system. Phys.Lett.A 111 (3) (1985), 101–103.

    Google Scholar 

  16. Yukawa, T.: New approach to the statistical properties of energy levels, Phys.Rev. Lett. 54 (1985), 1883–1886.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnlind, J., Hoppe, J. Eigenvalue-Dynamics off the Calogero–Moser System. Letters in Mathematical Physics 68, 121–129 (2004). https://doi.org/10.1023/B:MATH.0000043320.41280.76

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATH.0000043320.41280.76

Navigation