Skip to main content
Log in

Dirac Operators on Quantum Flag Manifolds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A Dirac operator D on quantized irreducible generalized flag manifolds is defined. This yields a Hilbert space realization of the covariant first-order differential calculi constructed by I. Heckenberger and S. Kolb. All differentials df=i[D,f] are bounded operators. In the simplest case of Podleś' quantum sphere one obtains the spectral triple found by L. Dabrowski and A. Sitarz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baston, R. J. and Eastwood, M. G.: The Penrose Transform, Oxford University Press, 1989.

  2. Cahen, M., Franc, A. and Gutt, S.: Spectrum of the Dirac operator on complex projective space P2q-1(C), Lett. Math. Phys. 18 (1989), 165–176.

    Article  Google Scholar 

  3. Cahen, M. and Gutt, S.: Spin structures on compact simply connected Riemannian symmetric spaces, Simon Stevin 62(3/4) (1988), 209–242.

    Google Scholar 

  4. Chakraborty, P. S. and Pal, A.: Equivariant spectral Triples on the quantum SU(2) group, K-Theory 28(2) (2003), 107–126.

    Article  Google Scholar 

  5. Connes, A.: Noncommutative Geometry, Academic Press, New York, 1994.

    Google Scholar 

  6. Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for SUq(2), math.QA/0209142.

  7. Dabrowski, L. and Sitarz, A.: Dirac operator on the standard Podle?' quantum sphere. In: Noncommutative Geometry and Quantum Groups, Banach Center Publications 61 (2003), 49–58.

  8. Dijkhuizen, M. S. and Stokman, J. V.: Quantized flag manifolds and irreducible ✼-representations, Comm. Math. Phys. 203 (1999), 297–324.

    Article  Google Scholar 

  9. Friedrich, T.: Dirac Operators in Riemannian Geometry. Amer. Math. Soc., Providence, 2000.

    Google Scholar 

  10. Fulton, W. and Harris, J.: Representation Theory, Springer, New York, 1991.

    Google Scholar 

  11. Goswami, D.: Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples. math-ph/0204010.

  12. Gover, A. R. and Zhang, R. B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I, Rev. Math. Phys. 11(5) (1999), 533–552.

    Article  Google Scholar 

  13. Heckenberger, I. and Kolb, S.: The locally finite part of the dual coalgebra of quantized irreducible flag manifolds, math.QA/0301244, to appear in Proc. London Math. Soc.

  14. Heckenberger, I. and Kolb, S.: Differential calculus on quantum homogeneous spaces, Lett. Math. Phys. 63(3) (2003), 255–264.

    Article  Google Scholar 

  15. Joseph, A.: Quantum Groups and their Primitive Ideals. Springer, New York, 1995.

    Google Scholar 

  16. Klimyk, A. U. and Schmüdgen, K.: Quantum Groups and their Representations, Springer, New York, 1997.

    Google Scholar 

  17. Parthasarathy, R.: Dirac operator and the discrete series, Ann. of Math. 96(2) (1972), 1–30.

    Google Scholar 

  18. Podles, P.: Quantum spheres, Lett. Math. Phys. 14 (1987), 193–202.

    Article  Google Scholar 

  19. Schmüdgen, K.: Commutator representations of differential calculi on the quantum group SUq(2). J. Geom. Phys. 31 (1999), 241–264.

    Article  Google Scholar 

  20. Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. 122(1) (1989), 125–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krähmer>, U. Dirac Operators on Quantum Flag Manifolds. Letters in Mathematical Physics 67, 49–59 (2004). https://doi.org/10.1023/B:MATH.0000027748.64886.23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATH.0000027748.64886.23

Navigation