Skip to main content
Log in

The Action Functional for Moyal Planes

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Modulo some natural generalizations to noncompact spaces, we show in this Letter that Moyal planes are nonunital spectral triples in the sense of Connes. The action functional of these triples is computed, and we obtain the expected result, i.e. the noncommutative Yang–Mills action associated with the Moyal product. In particular, we show that Moyal gauge theory naturally fits into the rigorous framework of noncommutative geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Carey, A., Phillips, J. and Sukochev, F.: Spectral flow and Dixmier traces, Adelaide, 2002, math. oa/0205076.

  2. Carminati, L., Iochum, B., Kastler, D. and Schücher, T.: On Connes' new principle of general relativity: can spinors hear the force of spacetime? In: S. Dopplicher, R. Longo, J. E. Roberts and L. Zsido (eds), Operator Algebras and Quantum Fields Theory, International Press, 1997.

  3. Carminati, L., Iochum, B. and Schücher, T.: Noncommutative Yang—Mills and noncom-mutative relativity: a bridge over trouble water, Eur. Phys. J. 8 (1999), 657–709.

    Google Scholar 

  4. Chaichian, M., Demichev, A. and Prešnajder, P.: Quantum field theory on noncommutative spacetimes and the persistence of ultraviolet divergences, Nuclear Phys. B 567 (2000), 360–390.

    Google Scholar 

  5. Chakraborty, P. S., Goswami, D. and Sinha, K. B.: Probability and geometry on some noncommutative manifolds, J. Oper. Theory 49 (2003), 187–203.

    Google Scholar 

  6. Chamseddine, A. H.: Noncommutative gravity, Beirut, 2003, hep-th/0301112.

  7. Chamseddine, A. H. and Connes, A.: Universal formula for noncommutative geometry actions: Uni cation of gravity and the standard model, Phys. Rev. Lett. 177 (1996), 4868–4871.

    Google Scholar 

  8. Connes, A.: The action functional in noncommutative geometry, Comm. Math. Phys. 117 (1988), 673–683.

    Google Scholar 

  9. Connes, A.: Noncommutative Geometry, Academic Press, London, 1994.

    Google Scholar 

  10. Connes, A.: Noncommutative geometry and reality, J. Math. Phys. 36 (1995), 6194–6231.

    Google Scholar 

  11. Connes, A. and Lott, J.: Particle models and noncommutative geometry, Nuclear Phys. B (Proc. Suppl.) 18 (1990), 29–47.

    Google Scholar 

  12. Douglas, M. R. and Nekrasov, N. A.: Noncommutative field theory, Rev. Modern Phys. 73, (2002), 977–1029.

    Google Scholar 

  13. Estrada, R., Gracia-Bondía, J. M. and Várilly, J. C.: On summability of distributions and spectral geometry, Comm. Math. Phys. 191 (1998), 219–248.

    Google Scholar 

  14. Figueroa, H.: Function algebras under the twisted product, Bol. Soc. Paranaense Mat. 11 (1990), 115–129.

    Google Scholar 

  15. Gayral, V., Gracia-Bondía, J. M., Iochum, B., Schücker, T. and Várilly, J. C.: Moyal planes are spectral triples, hep-th/0307241, to appear.

  16. Gracia-Bondía, J. M. and Várilly, J. C.: Algebras of distributions suitable for phase-space quantum mechanics I, J. Math. Phys. 29 (1988), 869–879.

    Google Scholar 

  17. Gracia-Bondía, J. M., Várilly, J. C. and Figueroa, H.: Elements of Noncommutative Geometry, Birkhäuser Adv. Texts, Birkhäuser, Boston, 2001.

    Google Scholar 

  18. Gracia-Bondía, J. M., Lizzi, F., Marmo, G. and Vitale, P.: Infinitely many star products to play with, J. High Energy Phys. 04 (2002), 026.

    Google Scholar 

  19. Landsman, N. P.: Mathematical Topics between Classical and Quantum Mechanics, Springer, New York, 1998.

    Google Scholar 

  20. Langmann, E.: Generalized Yang—Mills actions from Dirac operator determinants, J. Math. Phys. 42 (2001), 5238–5256.

    Google Scholar 

  21. Rennie, A.: Smoothness and locality for nonunital spectral triples, K-Theory 29 (2003), 1–39.

    Google Scholar 

  22. Schwartz, L.: Théorie des distributions, Hermann, Paris, 1966.

    Google Scholar 

  23. Seiberg, N. and Witten, E.: String theory and noncommutative geometry, J. High Energy Phys. 09 (1999) 032.

    Google Scholar 

  24. Strohmaier, A.: On noncommutative and semi-Riemannian geometry, math-ph/0110001.

  25. Szabo, R. J.: Quantum field theory on noncommutative space, hep-th/0109162.

  26. Várilly, J. C. and Gracia-Bondía, J. M.: Algebras of distributions suitable for phase-space quantum mechanics II: Topologies on the Moyal algebra, J. Math. Phys. 29 (1988), 880–887.

    Google Scholar 

  27. Várilly, J. C. and Gracia-Bondía, J. M.: Connes' noncommutative differential geometry and the standard model, J. Geom. Phys. 12 (1993), 223–301.

    Google Scholar 

  28. Wulkenhaar, R.: Non-renormalizability of Θ-expanded noncommutative QED, Vienna, 2002, hep-th/0112248.

  29. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayral, V. The Action Functional for Moyal Planes. Letters in Mathematical Physics 65, 147–157 (2003). https://doi.org/10.1023/B:MATH.0000004380.57824.94

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATH.0000004380.57824.94

Navigation