Skip to main content
Log in

Two-Dimensional Krall–Sheffer Polynomials andQuantum Systems on Spaces with Constant Curvature

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Krall and Sheffer found in 1967 that there exists at most nine different types of two-dimensional orthogonal polynomials which are eigensolutions of a second-order linear differential operator with polynomial coefficients. We show that, for all these types, there correspond quantum mechanical systems on a Euclidean (pseudo-Eeuclidean) plane, two-dimensional sphere, or hyperboloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barut, A. O. and Raczka R.: Theory of Group Representations and Applications, PWN-Polish Sci. Publ., Warsaw, 1977.

    Google Scholar 

  2. Dubrovin, B. A., Novikov, S. P.: and Fomenko, A. T.: Modern Geometry, 2nd edn, Nauka, Moscow, 1986 (in Russian).

    Google Scholar 

  3. Engelis, G. K.: On two-dimensional analogi of classical orthogonal polynomials, Latviiskii Matem. Ezhegodnik 15 (1974), 169–02 (Russian).

    Google Scholar 

  4. Harnad, J., Vinet, L., Yermolayeva, O. and Zhedanov, A.: Two—dimensional Krall—Sheffer polynomials and integrable systems, In: Symmetries and Integrability of Difference Equations (Tokyo, 2000); J. Phys. A 34 (2001), 10619–0625.

    Google Scholar 

  5. Harnad, J. and Winternitz, P.: Harmonics on hyperspheres, separation of variables and the Bethe Ansatz, Lett. Math. Phys. 33 (1995), 61—4.

    Google Scholar 

  6. Boyer, C. P., Kalnins, E. G. and Winternitz, P.: Completely integrable relativistic Hamiltonian systems and separation of variables in Hermitian hyperbolic spaces, J. Math. Phys. 24 (1983), 2022–034.

    Google Scholar 

  7. Kalnins, E. G., Miller, W. Jr. and Pogosyan, G. S.: Superintegrability and associated polynomial solutions: Euclidean space and sphere in two dimensions, J. Math. Phys. 37 (1996), 6439–467.

    Google Scholar 

  8. Kalnins, E. G., Miller, W. Jr. and Pogosyan, G. S.: Superintegrability on the two-dimensional hyperboloid, J. Math. Phys. 38 (1997), 5416–433.

    Google Scholar 

  9. Kalnins, E. G., Miller, W. Jr., Hakobyan, Ye. M. and Pogosyan, G. S.: Superintegrability on the two—dimensional hyperboloid. II, J. Math. Phys. 38 (1997), 5416–433.

    Google Scholar 

  10. Krall, H. and Sheffer, I. M.: Orthogonal polynomials in two variables, Ann. Math. Pura Appl. 76 (1967), 325–76.

    Google Scholar 

  11. Landau, L. D. and Lifshitz, E. M.: Quantum Mechanics. Nonrelativistic Theory. 4th edn, Nauka, Moscow, 1989.

    Google Scholar 

  12. Létourneau, P. and Vinet, L.: Superintegrable systems: polynomial algebras and quasi—exactly solvable hamiltonians, Ann. Phys. 243 (1995), 144–68.

    Google Scholar 

  13. Littlejohn, L. L.: Orthogonal polynomial solutions to ordinary and partial differential equations, In: M. Alfaro et al. (eds), Proc. 2nd Internat. Sympos. Orthogonal Polynomials and their Applications (Segovia, 1986), Lecture Notes in Math. 1329, Springer, Berlin, 1988, pp. 98–24.

    Google Scholar 

  14. Suetin, P. K.: Orthogonal Polynomials in Two Variables, Nauka, Moscow, 1988 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinet, L., Zhedanov, A. Two-Dimensional Krall–Sheffer Polynomials andQuantum Systems on Spaces with Constant Curvature. Letters in Mathematical Physics 65, 83–94 (2003). https://doi.org/10.1023/B:MATH.0000004361.34059.55

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATH.0000004361.34059.55

Navigation