Skip to main content
Log in

Fatigue of Structures and Materials in the 20th Century and the State of the Art

  • Published:
Materials Science Aims and scope

Abstract

The survey is based on the materials of a plenary lecture delivered by the author at the XIV European Conference on Fracture (ECF-14) on September 9, 2002 in Krakow. The author surveys the historical development and contemporary state of scientific and engineering knowledge about fatigue of materials and structures. This includes fatigue as a material phenomenon, prediction models for fatigue properties of structures, and load spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. A. Ewing and J. C. W. Humfrey, “The fracture of metals under repeated alternations of stress,” Phil. Trans. Roy. Soc., A200, 241–250 (1903).

    Google Scholar 

  2. R. E. Peterson, “Discussion of a century ago concerning the nature of fatigue, and review of some of the subsequent researches concerning the mechanism of fatigue,” ASTM Bulletin, No. 164, 50–56 (1950).

    Google Scholar 

  3. S. Timoshenko, “Stress concentration in the history of strength of materials. The William M. Murray Lecture,” Proc. SESA, 12, 1–12 (1954).

    Google Scholar 

  4. H. J. Gough, “Crystalline structure in relation to failure of metals, especially by fatigue,” Proc. ASTM, 33, 3–114 (1933).

    Google Scholar 

  5. M. Hetényi, Handbook of Experimental Stress Analysis, Wiley, New York (1950).

    Google Scholar 

  6. J. Y. Mann, “Aircraft fatigue—with particular emphasis on Australian operations and research,” in: Proc. of the 12th ICAF Symp. (Toulouse 1983), Centre d'Essais Aeronautique de Toulouse (1983).

  7. W. Schütz, “A history of fatigue,” Eng. Fract. Mech., 54, 263–300 (1996).

    Google Scholar 

  8. R. A. Smith, Fatigue Crack Growth, 30 Years of Progress, Pergamon (1986).

  9. R. J. Sanfor (editor), Selected Papers on Foundations of Linear Elastic Fracture Mechanics, SEM Classic Papers, Vol. CP1, SPIE Milestone Series, Vol. MS 137 (1997).

  10. D. Hanewinckel and H. Zenner, Fatigue Strength, a Collection of Facsimile, Historical Papers Until 1950, Technical University Clausthal (1989).

  11. J. Y. Mann, Bibliography on the Fatigue of Materials, Components and Structures, Vols. 1–4, Covering 1838 to 1969, Pergamon (1970–1990).

  12. J. Schijve, Fatigues of Structures and Materials, Kluwer AP, Dordrecht–Boston (2001).

    Google Scholar 

  13. E. Orowan, “Theory of the fatigue of metals,” Proc. Roy. Soc. (A), 171, 79 (1939).

    Google Scholar 

  14. A. K. Head “The growth of fatigue cracks,” Phil. Mag., 44, 925–938 (1953).

    Google Scholar 

  15. A. N. Stroh, “The formation of cracks as a result of plastic flow,” Proc. Roy. Soc. (A), 223, 404 (1955).

    Google Scholar 

  16. P. J. E. Forsyth, “The application of ‘fractography’ to fatigue failure investigations,” Roy. Aircraft Est., Tech. Note Met., 257 (1957).

  17. D. A. Ryder, “Some quantitative information obtained from the examination of fatigue failure surfaces,” Roy. Aircraft Est., Tech. Note Met., 288 (1958).

  18. A. H. Cottrell and D. Hull, “Extrusion and intrusion by cyclic slip in copper,” Proc. Roy. Soc. (A), 211–213 (1957).

  19. N. F. Mott, “A theory of the origin of fatigue cracks,” Acta Metallurgica, 6, 195–197 (1958).

    Google Scholar 

  20. “A discussion on work-hardening and fatigue in metals,” Proc. Roy. Soc., Math. Phys. Sciences, 242, No. 1229 (1957).

  21. B. L. Averbach, D. K. Felbeck, G. T. Hahn, and D. A. Thomas, “Fracture,” in: Proc. of the Internat. Conf. on the Atomic Mechanisms of Fracture, Techn. Press, MIT, Wiley (1959).

  22. P. J. E. Forsyth, The Physical Basis of Metal Fatigue, Blackie and Son, London (1969).

    Google Scholar 

  23. W. A. Backofen, “Formation of slip-band cracks in fatigue,” in: Proc. of the Internat. Conf. on the Atomic Mechanisms of Fracture, Techn. Press, MIT, Wiley (1959), pp. 435–449.

  24. S. Suresh, Fatigue of Materials (2nd edition), Cambridge University Press, Cambridge (1998).

    Google Scholar 

  25. Fatigue Crack Propagation, ASTM STP 415, pp. 131–180, 505–535 (1967).

  26. J. Schijve, “The significance of fractography for investigations of fatigue crack growth under variable-amplitude loading,” Fatigue Fract. Eng. Mater. Struct., 22, 87–99 (1999).

    Google Scholar 

  27. C. Q. Bowles, The Role of Environment, Frequency and Wave Shape During Fatigue Crack Growth in Aluminum Alloys, Doctoral-Degree Thesis, Delft University of Technology (1978). See also Report LR-270.

  28. C. Q. Bowles and J. Schijve, “Crack tip geometry for fatigue cracks grown in air and vacuum,” ASTM STP 811, 400–426 (1983).

  29. D. Broek, P. de Rijk, and P. J. Sevenhuysen, The Transition of Fatigue Cracks in Alclad Sheet, Nat. Aerospace Lab., NLR, Amsterdam, TR M2100 (1962).

    Google Scholar 

  30. T. C. Lindley and C. E. Richards, “The relevance of crack closure to fatigue crack propagation,” Mat. Sci. Eng., 14, 281–293 (1974).

    Google Scholar 

  31. F. A. Veer, The Effect of Shear Lips, Loading Transition, and Test Frequency on Constant ΔK and Constant-Amplitude Fatigue Tests, Doctoral-Degree Thesis, Delft University of Technology (1993).

  32. J. Zuidema, Square and Slant Fatigue Crack Growth, Doctoral-Degree Thesis, Delft University of Technology (1995).

  33. J. Schijve and W. J. Arkema, Crack Closure and the Environmental Effect on Fatigue Crack Growth, Delft University of Technology, Report LR-217 (1976).

  34. G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” Trans. ASME, J. Appl. Mech., 24, 361–364 (1957).

    Google Scholar 

  35. P. C. Paris, M. P. Gomez, and W. E. Anderson, “A rational analytical theory of fatigue,” Trend Eng., 13, 9–14 (1961).

    Google Scholar 

  36. S. Pearson, “Initiation of fatigue cracks in commercial aluminum alloys and the subsequent propagation of very short cracks,” Eng. Fract. Mech., 7, 235–247 (1945).

    Google Scholar 

  37. R. J. H. Wanhill, Durability Analysis Using Short and Long Fracture Crack Growth Data, Aircraft Damage Assessment and Repair. Institute of Engineering, Barton, Australia (1991).

    Google Scholar 

  38. K. J. Miller, “The three thresholds for fatigue crack propagation,” in: Fatigue and Fracture Mechanics, ASTM STP 1296 (1997), pp. 267–286.

  39. J. Schijve, “Fatigue crack closure observations and technical significance,” in: Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988), pp. 5–34.

  40. W. Elber, Fatigue Crack Propagation, Ph. D. Thesis, University of New South Wales, Australia (1968).

    Google Scholar 

  41. W. Elber, “The significance of fatigue crack closure,” in: Damage Tolerance in Aircraft Structures, ASTM STP 486 (1971), pp. 230–242.

  42. J. Schijve, “Fatigue crack growth under variable-amplitude loading,” in: Fatigue and Fracture, ASM Handbook, Vol. 19 (1996), pp. 110–133.

  43. L. F. Coffin, Jr., “Low cycle fatigue — A review,” Appl. Math. Res., 1, 129 (1962).

    Google Scholar 

  44. S. S. Manson and M. H. Hirschberg, “Fatigue behavior in strain cycling in the low-and intermediate-cycle range,” in: Fatigue, an Interdisciplinary Approach, Syracuse University, Syracuse (1964), pp. 133–178.

    Google Scholar 

  45. S. Stanzl-Tschegg and H. Mayer, “Fatigue in the very high cycle regime,” in: Proc. of the Internat. Conf. (July 2001), Institute of Meteorology and Physics, University of Agricultural Sciences, Vienna (2001).

    Google Scholar 

  46. N. E. Frost, K. J. Marsh, and L. P. Pook, Metal Fatigue, Clarendon, Oxford, (1974).

  47. “A guide for fatigue testing and the statistical analysis of fatigue data,” ASTM STP 91A (1963).

  48. R. S. Bellows, S. Muju, and T. Nicholas, “Validation of the step test method for generating Haigh diagrams for Ti-6Al-4V,” Int. J. Fracture, 21, 687–697 (1999).

    Google Scholar 

  49. R. B. Heywood, Designing Against Fatigue, Chapman & Hall, London (1962).

    Google Scholar 

  50. J. M. Ramsden, The Geriatric Problem, Flight International (October 22) (1977), pp. 1201–1207.

  51. H. Neuber, Kerbspannungslehre, Berlin, Springer (1937), English translation: J. W. Edwards, Theory of Notch Stresses, Ann Arbor, Michigan (dy1946).

    Google Scholar 

  52. R. E. Peterson, Stress Concentration Factors, Wiley, New York (1974).

    Google Scholar 

  53. P. Kühn and H. F. Hardrath, An Engineering Method for Estimating Notch-Size Effect in Fatigue Tests of Steel, NACA TN 2805 (1952).

  54. E. Siebel and M. Stieler, “Significance of dissimilar stress distributions for cyclic loading” [in German], Z. Ver. Deut. Ing., 97, 146–148 (1955).

    Google Scholar 

  55. J. Schijve, “Fundamental aspects of predictions on fatigue crack growth under variable-amplitude loading,” in: A. F. Blom and C. J. Beevers (editors), Theoretical Concepts and Numerical Analysis of Fatigue, Proc. Conf. Univ. of Birmingham, EMAS (1992), pp. 111–130.

  56. D. P. Rooke and D. J. Cartwright, Stress Intensity Factors, Her Majesty's Stationary Office, London (1976).

    Google Scholar 

  57. H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis Handbook (2nd edition), Paris Productions Inc., St. Lousis (1985).

    Google Scholar 

  58. Y. Murakami (editor), Stress Intensity Factors Handbook, Pergamon, Oxford (1987/1993).

  59. A. Pålmgren, “The endurance of ball bearings” [in German], Z. Ver. Deut. Ing., 68, 339–341 (1924).

    Google Scholar 

  60. B. F. Langer, “Fatigue failure from stress cycles of varying amplitude,” J. Appl. Mech., 4, A160–A162 (1937).

    Google Scholar 

  61. M. A. Miner, “Cumulative damage in fatigue,” J. Appl. Mech., 12, A159–A164 (1945).

    Google Scholar 

  62. J. Schijve, Some Remarks on the Cumulative Damage Concept, Minutes 4th ICAF Conf. (Zürich, May 1956), Paper 2 (1956).

  63. K. Heyer, Multi-Step Tests on Structural Elements [in German], Lilienthal-Gesellschaft für Luftfahrtforschung, Bericht 152 (1943).

  64. C. R. Smith, “Fatigue-service life prediction based on tests at constant stress levels,” Proc. SESA, 16, No. 1, 9 (1958).

    Google Scholar 

  65. J. F. Martin, T. H. Topper, and G. M. Sinclair, “Computer based simulation of cyclic stress-strain behavior with applications to fatigue,” Mats. Res. Stand., 11, 23–28, 50 (1971).

    Google Scholar 

  66. R. M. Wetzel (editor), Fatigue Under Complex Loading: Analysis and Experiments, Advances in Engineering, Vol. 7, SAE (1977).

  67. H. Neuber, “Theory of stress concentration for shear strained prismatic bodies with arbitrary nonlinear stress-strain law,” Trans. ASME, J. Appl. Mech., 28, 544–550 (1961).

    Google Scholar 

  68. E. Haibach, Modified Linear Damage-Accumulation Hypothesis Taking into Account a Decrease in the Fatigue Strength in the Process of Fatigue Damage [in German], Lab für Betriebsfestigkeit, LBF, Darmstadt, TM Nr. 50 (1970).

  69. European Prestandard, ENV 1999-2, May 1998 (1998).

  70. H. F. Hardrath and E. C. Naumann, “Variable-amplitude fatigue tests on aluminum alloy specimens,” in: Fatigue of Aircraft Structures, ASTM STP 274 (1960), pp. 125–138.

  71. E. C. Naumann, H. R. Hardrath, and E. C. Guthrie, Axial Load Fatigue Tests of 2024-T3 and 7075-T6 Aluminum Alloy Sheet Specimens Under Constant-and Variable-Amplitude Loads, NASA Report TN D-212 (1959).

  72. J. Schijve, The Accumulation of Fatigue Damage in Aircraft Materials and Structures, AGARDograph No. 157 (1972).

  73. J. Schijve, “The significance of flight simulation fatigue tests,” in: Durability and Damage Tolerance in Aircraft Design, Proc. of the 13th ICAF Symp. (Pisa, 1985), EMAS, Warley (1985), pp. 71–170.

    Google Scholar 

  74. J. Schijve, “Fatigue crack propagation in light alloy sheet material and structures,” in: Advances in Aeronautical Sciences, Vol. 3, Pergamon Press (1961), pp. 387–408.

    Google Scholar 

  75. C. M. Hudson and H. F. Hardrath, Effects of Changing Stress Amplitude on the Rate of Fatigue Crack Propagation in Two Aluminum Alloys, NASA TN D-960 (1961).

  76. W. J. Mills and R. W. Hertzberg, “The effect of sheet thickness on fatigue crack retardation in 2024-T3 aluminum alloy,” Eng. Fract. Mech., 7, 705–711 (1975).

    Google Scholar 

  77. G. S. Petrak, “Strength level effects on fatigue crack growth and retardation,” Eng. Fract. Mech., 6, 725–733 (1974).

    Google Scholar 

  78. J. Willenborg, R. M. Engle, and H. A. Wood, A Crack Growth Retardation Model Using an Effective Stress Concept, AFFDLTR71-1, Air Force Fight Dynamic Laboratory, Dayton, OH (1971).

    Google Scholar 

  79. O. E. Wheeler, “Spectrum loading and crack growth,” ASME Trans. J. Basic Eng., 94, 181–186 (1972).

    Google Scholar 

  80. U. H. Padmadinata, Investigation of Crack-Closure Prediction Models for Fatigue in Aluminum Sheet under Flight-Simulation Loading, Doctoral-Degree Thesis, Delft University of Technology (1990).

  81. A. U. de Koning, A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates Under Variable-Amplitude Loading, ASTM STP 743, 63–85 (1981).

  82. U. H. Padmadinata and J. Schijve, “Prediction of fatigue crack growth under flight-simulation loading with the modified CORPUS model,” in: C. E. Harris (editor), Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, NASA Conf. Publ. 3274 (1994), pp. 547–562.

  83. D. S. Dugdale, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids, 8, 100–104 (1960).

    Google Scholar 

  84. H. D. Dill and C. R. Saff, “Spectrum crack growth prediction method based on crack growth surface displacement and contact analysis,” in: Fatigue Crack Growth under Spectrum Loading, ASTM STP 595 (1976), pp. 306–319.

  85. H. D. Dill, C. R. Saff, and J. M. Potter, “Effects of fighter attack spectrum and crack growth,” in: Effects of Load Spectrum Variables on Fatigue Crack Initiation and Propagation, ASTM STP 714 (1980), pp. 205–217.

  86. J. C. Newman, Jr., “A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading,” in: Methods and Models for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748 (1981), pp. 53–84.

  87. D. J. Dougherty, A. U. de Koning, and B. M. Hillberry, “Modelling high crack growth rates under variable-amplitude loading,” in: Advances in Fatigue Lifetime Predictive Techniques, ASTM STP 1122 (1992), pp. 214–233.

  88. G. S. Wang and A. F. Blom, “A strip model for fatigue crack growth predictions under general load conditions,” Eng. Fract. Mech., 40, 507–533 (1991).

    Google Scholar 

  89. E. Gassner, “Strength experiments under cyclic loading in aircraft structures” [in German], Luftwissen, 6, 61–64 (1939).

    Google Scholar 

  90. A. Teichmann, “Basic consideration of fatigue durability in service” [in German], Jahrbuch der Deutschen Luftfahrtforschung, 1, 467–471 (1941).

    Google Scholar 

  91. F. Seewald, “Measurements with a glass scratching recorder of the German Institute for Aeronautics” [in German], Maschinenbau, 10, 725–727 (1931).

    Google Scholar 

  92. J. Taylor, “Measurements of gust loads in aircraft,” J. Roy. Aero. Soc., 57, 78–88 (1953).

    Google Scholar 

  93. Data of the Fokker Aircraft Industry (1980).

  94. Proceedings of the 20th Symposium on Aircraft Integrated Monitoring Systems (2000), Tech. Univ. Münich, Faculty Maschinenwesen (2000).

  95. Y. Murakami (editor), The Rainflow Method in Fatigue, The Tatsuo Endo Memorial Volume, Butterworth-Heinemann, Oxford (1992).

  96. A. Burns, Fatigue Loadings in Flight: Loads in the Tailplane and Fin of a Varsity, A.R.C. Tech. Report C.P. 256, London (1956).

  97. Standard Practices for Cycle Counting in Fatigue Analysis, ASTM Standard E 1049-90 (1990).

  98. J. Branger, The Full-Scale Fatigue Test on the DH-112 Venom., Eidg. Flugzeugwerk Emmen, F&W S-162 (1964).

  99. J. Schijve, “Fatigue predictions and scatter,” Fatigue Fract. Eng. Mater. Struct., 17, 381–396 (1994).

    Google Scholar 

  100. R. Adenstedt, Scatter of Fatigue Strength [in German], Doctoral-Degree Thesis, Technical University of Clausthal (2001).

  101. D. Radai, “Review of fatigue strength assessment of nonwelded and welded structures based on local parameters,” Int. J. Fatigue, 18, 153–170 (1996).

    Google Scholar 

  102. M. Skorupa, “Local interaction effects during fatigue crack growth under variable-amplitude loading — A literature review. Part I: Empirical trends, Part II: Qualitative interpretation,” Fatigue Fract. Eng. Mater. Struct., 21, 987–1006; 22, 905–926.

  103. U. G. Goranson, “Continuous airworthiness of aging aircraft,” in: Proc. of the 2nd Annual Internat. Conf. on Aging Aircraft, Federal Aviation Admin. of the U.S. Dept. of Trans., Baltimore (1989), pp. 61–89.

    Google Scholar 

  104. C. R. Saff and D. R. Holloway, “Evaluation of crack growth gages for service life tracking,” in: 13th Conf. on Fracture Mechanics, ASTM STP 743 (1981), pp. 623–640.

  105. R. J. H. Wanhill, E. A. B. de Graaf, and A. A. M. Delii, “Significance of a rotor blade failure for fleet operation, inspection, maintenance, design, and certification,” in: Fifth Europ. Rotorcraft and Powered Lift Aircraft Forum (Amsterdam, September1979), Paper 38, Amsterdam (1979).

  106. A. G. Flatau and K. P. Chong, “Dynamic start material and structural systems,” Eng. Struct., 24, 261–270 (2002).

    Google Scholar 

  107. K. J. Miller, Structural Integrity — Whose Responsibility?, The 36th John Player Memorial Lecture, Institute of Mechanical Engineers (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schijve, J. Fatigue of Structures and Materials in the 20th Century and the State of the Art. Materials Science 39, 307–333 (2003). https://doi.org/10.1023/B:MASC.0000010738.91907.a9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MASC.0000010738.91907.a9

Keywords

Navigation