Skip to main content
Log in

Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard)

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

The Alfred Wegener Institute of Polar and Marine Research, the University of Bergen and Hokkaido University acquired new seismic refraction data along a transect from the Knipovich Ridge to the inner Van Mijenfjorden in southern Svalbard. A close spacing of on- and offshore receivers and a dense marine shot pattern provide the data for a high resolution p-wave velocity model for geological interpretation. Additional new seismic reflection data (University of Bergen) yield structural information for a more reliable analysis. Crustal thickness along the Van Mijenfjorden is 33 to 34 km. Seismic velocities of 5.0 km s−1 are observed within the upper crustal section of the Tertiary Central Spitsbergen Basin. A Paleozoic sedimentary basin with a depth of 8 to 10 km is associated with the Nordfjorden Block. The seismic velocities are up to 6.0 km s−1. Paleozoic sedimentary rocks are expected further to the west of the Hornsund Lineament since seismic velocities reveal a similar range here. West of the Bellsund the continental crust thins gradually over a 90 km wide rifted zone. The velocity structure within this section is very complex and comprises zones of decreased velocities below the West Spitsbergen Fold Belt (down to 20 km depth) and slightly elevated velocities (7.2 km s−1) at the crust-mantle transition. The first structure is interpreted as intensively fractured rocks linked to post-Late Paleocene transpressive orogenic activity and subsequently affected by transtension during break-up from Greenland. The faster deep-crustal velocities are supposed to express magmatic intrusions of an unidentified origin. Melts could either be channelled by the Spitsbergen Shear Zone from more distant sources, or originate in the magmatic interaction between the northern Knipovich Ridge and the neighbouring young rifted crust. Oceanic crust each side of the Knipovich Ridge is thin (∼3.5 km) and is characterised by the absence of oceanic layer 3 (3.5/4.1 to 4.7 km s−1). The oceanic section exhibits zones of very thin crust (∼1 km) that are interpreted as fracture zones. Beneath these we observed decreased mantle velocities (∼7.3 km s−1) indicating probable serpentinization of peridotites along these fracture zones. Thickness variations further provide information about the segmentation and magma supply along the northern Knipovich Ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amundsen, H.E.F., Griffin, W.L. and O'Reilly, S.Y., 1987, The lower crust and upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics, Tectonophysics 139, 169–185.

    Google Scholar 

  • Boebel, T., 2000, Airborne topography and gravimetry: System and application to Fram Strait, Svalbard and Northeast Greenland, Reports on Polar and Marine Research 366.

  • Breivik, A.J., Faleide, J.I. and Verhoef, J, 1998, Effect of thermal contrasts on gravity modeling at passive margins; results from the western Barents Sea, J. Geophys. Res. 104(7), 15.293–15.311.

    Google Scholar 

  • Carlson, R.L. and Herrick, C.N., 1990, Densities and porosities in the oceanic crust and their variations with depth and age, J. Geophys. Res. 95(B6), 9153–9170.

    Google Scholar 

  • Chan, W.W. and Mitchell, B.J., 1982, Synthetic seismogram and surface wave constrains on crustal models of Spitsbergen, Tectonophysics 89, 51–76.

    Google Scholar 

  • Christensen, N.I., 1966, The elasticity of ultrabasic rocks, J. Geophys. Res. 71, 5921–5931.

    Google Scholar 

  • Christensen, N.I. and Mooney, W.D., 1995, Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res. 100(B7), 9761–9788.

    Google Scholar 

  • Crane, K., Sundvor, E., Buck, R. and Martinez, F., 1991, Rifting in the Northern Norwegian-Greenland sea: Thermal Tests of Asymmetric Spreading, J. Geophys. Res. 96(B9), 14529–14550.

    Google Scholar 

  • Crane, K., Doss, H., Vogt, P., Sundvor, E., Cherkashov, G., Poroshima, I. and Joseph, D., 2001, The role of the Spitsbergen shear zone in determining morphology, segmentation and evolution of the Knipovich Ridge, Mar. Geophys. Res. 22: 153–205.

    Google Scholar 

  • Czuba, W., Grad, M. and Guterch, A., 1999, Crustal structure of north-western Spitsbergen from DSS measurements, Polish Pol. Res. 20(2), 131–148.

    Google Scholar 

  • DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S., 1990, Current plate motions, Geophys. J. Int. 101, 425–478.

    Google Scholar 

  • Detrick, R.S., White, R.S. and Purdy, G.M., 1993, Crustal structure of North Atlantic Fracture Zones, Rev. Geophys. 31(4), 439–458.

    Google Scholar 

  • Eiken, O., 1993, An outline of the northwestern Svalbard continental margin, in Arctic Petroleum Potential, in: Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. and Lund, T.B. (Eds.), Arctic Geology and Petroleum Potential, NPF Special Publication 2, Elsevier, Amsterdam, pp. 619–629.

    Google Scholar 

  • Eiken, O., 1994, Seismic Atlas ofWestern Svalbard-A selection of regional seismic transects, Norsk Polarinstitutt Meddelelser 130, 3–73.

    Google Scholar 

  • Eiken, O. and Austegard, A., 1987, The Tertiary orogenic belt of West-Spitsbergen: Seismic expressions of the offshore sedimentary basins, Norsk Geologisk Tidsskrift 67, 383–394.

    Google Scholar 

  • Eldholm, O., Faleide, J., I. and Myhre, A.M., 1987, Continent-ocean transition at the western Barents Sea/Svalbard continental margin, Geology 15, 1118–1122.

    Google Scholar 

  • Eldholm, O., Karasik, A.M. and Reksnes, P.A., 1990, The North American plate boundary, in: Grantz, A., Johnson, L. & Sweeney, J.F. (Eds.), The Arctic Ocean region. The Geology of North America L, Geological Society of America, Boulder, Colorado, pp. 171–184.

    Google Scholar 

  • Faleide, J.I., Gudlaugsson, S.T., Eldholm, O., Myhre, A.M. and Jackson, H.R., 1991, Deep seismic transects across the sheared western Barents Sea-Svalbard continental margin, Tectonophysics 189, 73–89.

    Google Scholar 

  • Faleide, J.I, Vågnes, E. and Gudlaugsson, S.T., 1993, Late-Mesozois-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting, Mar. Pet. Geol. 10, 186–214.

    Google Scholar 

  • Feden, R. H., Vogt, P.R. and Fleming, H.S, 1979, Magnetic and Bathymetric Evidence for the "Yermak Hot Spot" northwest of Svalbard in the Arctic Basin, Earth Planet. Sci. Lett. 44, 18–38.

    Google Scholar 

  • Gabrielsen, R. H., Oddbjørn, S.K., Haugsbø, H., Midbøe, P.S., Nøttvedt, A., Rasmussen, E. and Skott, P.H., 1992, A structural outline of Forlandsundet Graben, Prins Karls Forland, Svalbard, Norsk Geologisk Tidsskrift 72, 105–120.

    Google Scholar 

  • Guterch, A., Pajchel, J., Perchuc, E., Kowalski, J., Duda, S., Komber, G., Bojdys G., and Sellevoll, M.A., 1978, Seismic reconnaissance measurements on the crustal structure in the Spitsbergen Region 1976, University of Bergen Seismological Observatory, Bergen.

    Google Scholar 

  • Hajnal, Z., Burianyk, M.J.A., Kesmarky, I. and Overton, A., 1990, Reflection Survey on Hobson's Choise Island, Arctic Ocean, Mar. Geol. 93, 211–224.

    Google Scholar 

  • Harland, W.B. and Wright, N.J.R., 1979, Alternative hypothesis for the pre-Carboniferous evolution of Svalbard, Norsk Polarinstitutt Skrifter 167, 89–117.

    Google Scholar 

  • Harland, W.B., 1997a, Svalbard's geological frame, in Harland, W.B. (ed.), The Geology of Svalbard, Geol. Surv. Mem. 17, The Geological Society London, UK, pp. 23–44.

    Google Scholar 

  • Harland, W.B., 1997b, Devonian History, in Harland, W.B. (ed.), The Geology of Svalbard, Geol. Surv. Mem. 17, The Geological Society London, UK, pp. 289–309

    Google Scholar 

  • Harland, W.B., 1997c, Central Western Spitsbergen (with a contribution with Geddes, I. and Doubleday, P.A.), in Harland, W.B. (Ed.), The Geology of Svalbard, Geol. Surv. Mem. 17, The Geological Society London, UK, pp. 154–178.

    Google Scholar 

  • Harland, W.B., 1997d, Paleogene History (with a contribution with Challinor, A. and Doubleday, P.A.), in: Harland, W.B. (ed.), The Geology of Svalbard, Geological Survey Memoir 17, The Geological Society London, UK, pp. 388–417.

    Google Scholar 

  • Howells, K., Masson Smith, D. and Maton, P.I., 1977, Some rock and formation densities from Svalbard, Årbok Norsk Polarinstitutt 1975, 53–67.

    Google Scholar 

  • Jakobsson, M., Cherkis, N.Z., Woodward, J., Macnab, R. and Coakley, 2000, New grid of Arctic bathymetry aids scientists and mapmakers, EOS Transactions 81(9), 89, 93, 96.

    Google Scholar 

  • Jackson, H.R., 1990, Evolution and Regional Stratigraphy of the Northeastern Canadian Polar Margin, Mar. Geol. 93, 179–192.

    Google Scholar 

  • Jackson, H.R., Johnson, G.L., Sundvor, E. and Myhre, A., 1984, The Yermak Plateau: Formed at a Triple Junction, J. Geophys Res. 89(B5), 3223–3232.

    Google Scholar 

  • Johannessen, E.P. and Steel, R.J., 1992, Mid-Carboniferous extension and rift-infill sequences in the Billefjorden Trough, Svalbard, Norsk Geologisk Tidsskrift 72, 35–48.

    Google Scholar 

  • Jokat, W., Eisen, O., Konn, B., Lensch, N., Martens, H., Ritzmann, O., Rogenhagen, J., Thalmann, K. and Weigelt, E., 1998, Marine Geophysics, in: Krause, G. (ed.), The Expedition ARKTISXIII/ 3 of RV 'Polarstern' in 1997, Reports on Polar and Marine Research 262, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp. 71–82.

    Google Scholar 

  • Kellogg, H.E., 1975, Tertiary Stratigraphy and Tectonism in Svalbard and Continental Drift, AAPG Bull. 59 (3), 465–485.

    Google Scholar 

  • Kurinin, R.G., 1970, Density and Magnetic Suscpetibilities of Spitsbergen Rocks, in Harland, W.B. (ed.), Geology of Spitsbergen (1965) Vol. 2, National Lending Library for Science and Technology, Yorshire, UK, pp. 284–286.

    Google Scholar 

  • Lin, J., Purdy, G.M., Schouten, H., Sempere, J.-C. and Zervas, C., 1990, Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge, Nature 344, 627–632.

    Google Scholar 

  • Lowell, J.D., 1972, Spitsbergen Tertiary Orogenic Belt and the Spitsbergen Fracture Zone, Geol. Soc. Am. Bul. 83, 3091–3102.

    Google Scholar 

  • Manby, G. and Lyberis, N., 1992, Tectonic evolution of the Devonian Basin of northern Svalbard, in: Dallmann, W.K., Andresen, A. & Krill, A. (eds.), Post-Caledonian Tectonic Evolution of Svalbard, Norsk Geologisk Tidskrift 72, 7–19.

  • Mann, A. and Townsend, C., 1989, The post-Devonian tectonic evolution of southern Spitsbergen illustrated by structural cross-sections through Bellsund and Hornsund, Geological Magazine 126, 549–566.

    Google Scholar 

  • Mjelde, R., Van Schaak, M. and Shimamura, H., 1998, OBS experiment in the Northern Barents Sea, 11. July-31. August, 1998, Cruise report, University of Bergen, Bergen.

    Google Scholar 

  • Mjelde, R. and Johansen, T.A., 1999, Cruise Report: Multichannel reflection survey west Spitsbergen, 17 September-1 October 1999, Cruise report, University of Bergen, Bergen.

    Google Scholar 

  • Müller, D. and Spielhagen, R.F., 1990, Evolution of the Central Tertiary Basin of Spitsbergen: towards a synthesis of sediment and plate tectonic history, Palaeogeogr., Palaeoclimatol. Palaeoecol. 80, 153–172.

    Google Scholar 

  • Mutter, J.C., Buck, W.R. and Zehnder, C.M., 1988, Convective partial melting. A model for the formation of thick basaltic sequences during the initation of spreading, J. Geophys. Res. 93(B2), 1031–1048.

    Google Scholar 

  • Myhre, A.M., Eldholm, O. and Sundvor, E., 1982, The margin between Senja and Spitsbergen fracture zones: Implications from plate tectonics, Tectonophysics 89, 1–32.

    Google Scholar 

  • Myhre, A. M. and Eldholm, O., 1988, TheWestern Svalbard margin (74°-80° N), Mar. Petrol. Geol. 5, 143–156.

    Google Scholar 

  • Nøttvedt, A., Livbjerg, F., Midbøe, P.S. and Rasmussen, E., 1993, Hydrocarbon potential of the Central Spitsbergen Basin, in: Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. and Lund, T.B. (eds.), NPF Special Publications 2, Elsevier, Amsterdam, pp. 333–361.

    Google Scholar 

  • Okino, K., Curewitz, D., Asada, M., Tamaki, K., Vogt, P. and Crane, K., 2002, Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system, E. Planet. Sci. Lett. 202, 275–288.

    Google Scholar 

  • Posewang, J. and Mienert, J., 1999, High-resolution seismic studies of gas hydrates west of Svalbard, Geo-Mar. Let. 19, 150–156.

    Google Scholar 

  • Ritzmann, O. and Jokat, W., 2003, Crustal structure of northwestern Svalbard and the adjacent Yermak Plateau: Evidence for Oligocene detachment tectonics and non-volcanic break-up, Geophys. J. Int. 152, 139–159.

    Google Scholar 

  • Schlüter, H.U. and Hinz, K., 1978, The continental margin of West Spitsbergen. Polarforschung 48(1/2), 151–169.

    Google Scholar 

  • Sellevoll, M.A., Duda, S.J., Guterch, A., Pajchel, J., Perchus, E. and Thyssen, F., 1991, Crustal structure in the Svalbard region from seismic measurements, Tectonophysics 189, 55–71.

    Google Scholar 

  • Steel, R.J., Helland-Hansen, W., Kleinspehn, K., Nøttvedt, A. and Rye-Larsen, M., 1985, The Teriary strike-slip basins and orogenic belt of Spitsbergen, in: Biddle, K.T. and Christie-Blick, N., (Eds.), Strike-slip deformation, Basin formation and Sedimentation, Special Publications Society of Economic Paleontologists and Mineralogists 37, pp. 339–359.

    Google Scholar 

  • Sundvor, E. and Austegard A., 1990, The Evolution of the Svalbard Margins: Synthesis and new Results, in Bleil, U. and Thiede, J. (eds.), Geological History of the Polar Oceans: Arctic Versus Antarctic, Kluwer Academic Publishers, Netherlands, pp. 77–94.

    Google Scholar 

  • Thompson, R.N. and Gibson, S.A., 1991, Subcontinental mantle plumes, hotspots and pre-existing thinspots, J. Geol. Soc. London 147, 973–977.

    Google Scholar 

  • Townsend, C. and Mann, A., 1989, The Tertiary Orogenic Belt of West Spitsbergen: seismic expressions of offshore sedimentary basins. A comment, Norsk Geologisk Tidskrift 69, 135–136.

    Google Scholar 

  • White, R.S. and McKenzie, D., 1989, Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts, J. Geophys. Res. 94(B6), 7685–7729.

    Google Scholar 

  • White, R.S. and McKenzie, D., 1995, Mantle plumes and flood basalts, J. Geophys. Res. 100(B9), 17543–17585.

    Google Scholar 

  • White, R.S., Minshull, T.A., Bickle, M.J. and Robinson, C.J., 2001, Melt generation at very slow-spreading oceanic ridges; constraint from geochemical and geophysical data. J. Petr. 42(6), 1171–1196.

    Google Scholar 

  • Zelt, C.A. and Smith, R.B., 1992. Seismic travel time inversion for 2-D crustal velocity structure. Geophys. J. Int. 108, 16–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Jokat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritzmann, O., Jokat, W., Mjelde, R. et al. Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard). Marine Geophysical Researches 23, 379–401 (2002). https://doi.org/10.1023/B:MARI.0000018168.89762.a4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MARI.0000018168.89762.a4

Keywords

Navigation