Abstract
We describe a KB Gödelian ontological system, and some other weak systems, in a fully formal way using theory of types and natural deduction, and present a completeness proof in its main and specific parts. We technically and philosophically analyze and comment on the systems (mainly with respect to the relativism of values) and include a sketch of some connected aspects of Gödel's relation to Kant.
This is a preview of subscription content, access via your institution.
REFERENCES
Adams, R. M.: The logical structure of Anselm's arguments, Philos. Rev. 80 (1971), 28–54.
Adams, R. M.: Introductory note to *1970, in S. Feferman et al. (eds), Kurt Gödel, Collected Works, Vol. 3, Oxford University Press, New York, 1995, pp. 388–402.
Anderson, C. A.: Some emendations of Gödel's ontological proof, Faith and Philosophy 7 (1990), 291–303.
Cocchiarella, N.: A completeness proof theorem in second order modal logic, Theoria bd35 (1969), 81–103.
Fitting, M.: Types, Tableaus and Gödel's God, Kluwer Academic Publishers, Dordrecht, 2002.
Føllesdal, D.: Introductory note to *1961/?, in S. Feferman et al. (eds), Kurt Gödel, Collected Works, Vol. 3, Oxford University Press, New York, 1995, pp. 364–373.
Gallin, D.: Intensional and Higher-Order Modal Logic: With Applications to Montague Semantics, North-Holland, Amsterdam, 1975.
Gödel, K.: Relativity and idealistic philosophy, in S. Feferman et al. (eds), Collected Works, Vol. 2, Oxford University Press, New York, 1990, pp. 202–207.
Gödel, K.: Collected Works, Vol. 3, Oxford University Press, New York, 1995.
Gödel, K.: The modern development of the foundations of mathematics in the light of philosophy, in S. Feferman et al. (eds), Collected Works, Vol. 3, Oxford University Press, New York, 1995, pp. 374–387.
Gödel, K.: Ontological proof, texts relating to the ontological proof, in S. Feferman et al. (eds), Collected Works, Vol. 3, Oxford University Press, New York, 1995, pp. 403–404, 429-437.
Gödel, K.: Some basic theorems on the foundations of mathematics and their implications, in S. Feferman et al. (eds), Collected Works, Vol. 3, Oxford University Press, New York, 1995, pp. 304–323.
Gödel, K.: Some observations about the relationship between theory of relativity and Kantian philosophy, in S. Feferman et al. (eds), Collected Works, Vol. 3, Oxford University Press, New York, 1995, pp. 230–259.
Goldblatt, R.: Logics of Time and Computation, 2nd, revised and expanded edn, Center for the Study of Language and Information, Stanford, 1992.
Hájek, P.: Magari and others on Gödel's ontological proof, in A. Ursini and P. Aglianó (eds), Logic and Algebra, Dekker, New York, 1996, pp. 125–135.
Hájek, P.: A new small emendation of Gödel's ontological proof, Studia Logica 71 (2002), 149–164.
Kant, I.: Kritik of praktischen vernunft, Gesammelte Schriften, Vol. 5, Königlich Preussische Akademie der Wissenschaften, Berlin, 1908.
Kant, I.: Critique of Pure Reason, St Martin's Press and MacMillan, New York and Toronto, 1965, transl. by N. Kemp Smith.
Magari, R.: Logica e teofilia, Notizie di Logica 7 (1988), 11–20.
Menzel, C.: The true modal logic, J. Philos. Logic 20 (1991), 331–374.
Sobel, J. H.: Gödel's ontological proof, in J. J. Thomson (ed.), On Being and Saying, MIT Press, Cambridge, MA, 1987, pp. 241–161.
Sobel, J. H.: Logic and theism, http://www.utsc.utoronto.ca/~sobel/Logic_Theism, 2002, forthcoming in Cambridge University Press.
Tieszen, R.: Gödel's path from the incompleteness theorems (1931) to phenomenology (1961), Bull. Symbolic Logic 4 (1988), 181–203.
Wang, H.: A Logical Journey, The MIT Press, Cambridge, MA, 1996.
Rights and permissions
About this article
Cite this article
Kovač, S. Some Weakened Gödelian Ontological Systems. Journal of Philosophical Logic 32, 565–588 (2003). https://doi.org/10.1023/B:LOGI.0000003927.84602.4b
Issue Date:
DOI: https://doi.org/10.1023/B:LOGI.0000003927.84602.4b