Skip to main content

Behavior of class-level landscape metrics across gradients of class aggregation and area

Abstract

Habitat loss and fragmentation processes strongly affect biodiversity conservation in landscapes undergoing anthropogenic land use changes. Many attempts have been made to use landscape structure metrics to quantify the independent and joint effects of these processes. Unfortunately, ecological interpretation of those metrics has been plagued by lack of thorough understanding of their theoretical behavior. We explored behavior of 50 metrics in neutral landscapes across a 21-step gradient in aggregation and a 19-step gradient in area using a full factorial design with 100 replicates of each of the 399 combinations of the two factors to assess how well metrics reflected changes in landscape structure. Metric values from real landscapes were used to determine the extent of neutral landscape space that is represented in real landscapes. We grouped metrics into three major behavioral classes: strongly related to focal class area (n=15), strongly related to aggregation (n=7), and jointly responding to area and aggregation (n=28). Metrics strongly related to class area exhibited a variety of distinct behaviors, and many of these metrics have unique interpretations that make each of them particularly useful in certain applications. Metrics strongly related to aggregation, independent of class area, are particularly useful in assessing effects of fragmentation. Moreover, metrics in this group exhibited a range of specific behaviors, highlighting subtle but different aspects of landscape aggregation even though we controlled only one aspect of aggregation. The non-linear behavior exhibited by many metrics renders interpretation difficult and use of linear analytical techniques inappropriate under many circumstances. Ultimately, comprehensive characterization of landscapes undergoing habitat loss and fragmentation will require using several metrics distributed across behavioral groups.

This is a preview of subscription content, access via your institution.

References

  • Belisle M. and Clair C.C.S. 2002. Cumulative effects of barriers on the movements of forest birds. Conservation Ecology 5: 480–495.

    Google Scholar 

  • Bender D.J., Contreras T.A. and Fahrig L. 1998. Habitat loss and population decline: A meta-analysis of the patch size effect. Ecology 79: 517–533.

    Google Scholar 

  • Bergin T.M., Best L.B., Freemark K.E. and Koehler K.J. 2000. Effects of landscape structure on nest predation in roadsides of a midwestern agroecosystem: a multiscale analysis. Landscape Ecology 15: 131–143.

    Article  Google Scholar 

  • Bogaert J. 2002. A mathematical comment on the formulae for the aggregation index and the shape index. Landscape Ecology 17: 87–90.

    Google Scholar 

  • Boulet M. and Darveau M. 2000. Depredation of artificial bird nests along roads, rivers and lakes in a boreal balsam fir, Abies balsamea, forest. Canadian Field-Naturalist 114: 83–88.

    Google Scholar 

  • Burke D.M. and Nol E. 2000. Landscape and fragment size effects on reproductive success of forest-breeding birds in Ontario. Ecological Applications 10: 1749–1761.

    Google Scholar 

  • Cain D.H., Riitters K. and Orvis K. 1997. A multi-scale analysis of landscape statistics. Landscape Ecology 12: 199–212.

    Article  Google Scholar 

  • Chen J., Franklin J.F. and Spies T.A. 1995. Growing season microclimatic gradients from clear cut edges in old-growth Douglas-fir forests. Ecological Applications 5: 74–86.

    Google Scholar 

  • Demaynadier P.G. and Hunter J.L.J. 1998. Effects of silvicultural edges on the distribution and abundance of amphibians in Maine. Conservation Biology 12: 340–352.

    Google Scholar 

  • Euskirchen E.S., Chen J.Q. and Bi R.C. 2001. Effects of edges on plant communities in a managed landscape in northern Wisconsin. Forest Ecology and Management 148: 93–108.

    Article  Google Scholar 

  • Fahrig L. 1998. When does fragmentation of breeding habitat affect population survival? Ecological Modelling 105: 273–292.

    Google Scholar 

  • Fahrig L. 2002. Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecological Applications 12: 346–353.

    Google Scholar 

  • Fahrig L. and Jonsen I. 1998. Effect of habitat patch characteristics on abundance and diversity of insects in an agricultural landscape. Ecosystems 1: 197–205.

    Google Scholar 

  • Fahrig L. and Merriam G. 1985. Habitat patch connectivity and population survival. Ecology 66: 1762–1768.

    Google Scholar 

  • Gardner R.H. 1999. RULE: Map generation and a spatial analysis program.. In: Klopatek I. and Gardner R.H. (eds), Landscape Ecological Analysis: Issues and Applications, pp. 280–303. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Gardner R.H., Milne B.T., Turner M.G. and O’Neill R.V. 1987. Neutral models for the analysis of broad-scale landscape patterns. Landscape Ecology 1: 19–28.

    Google Scholar 

  • Gehlhausen S.M., Schwartz M.W. and Augspurger C.K. 2000. Vegetation and microclimate edge effects in two mixed-mesophytic forest fragments. Plant Ecology 147: 21–35.

    Google Scholar 

  • Gibbs J.P. 1998. Amphibian movements in response to forest edges, roads, and streambeds in southern New England. Journal of Wildlife Management 62: 584–589.

    Google Scholar 

  • Gustafson E.J. 1998. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1: 143–156.

    Article  Google Scholar 

  • Gustafson E.J. and Parker G.M. 1992. Relationships between land cover proportion and indices of landscape spatial pattern. Landscape Ecology 7: 101–110.

    Google Scholar 

  • Hargis C.D., Bissonette J.A. and David J.L. 1997. Understanding measures of landscape pattern. In: Bissonette J.A. (ed.), Wildlife and Landscape Ecology, pp. 231–261. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Hargis C.D., Bissonette J.A. and David J.L. 1998. The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecology 13: 167–186.

    Article  Google Scholar 

  • Haydon D.T. and Pianka E.R. 1999. Metapopulation theory, landscape models, and species diversity. Ecoscience 6: 316–328.

    Google Scholar 

  • He H.S., DeZonia B.E. and Mladenoff D.J. 2000. An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecology 15: 591–601.

    Article  Google Scholar 

  • Heske E.J., Robinson S.K. and Brawn J.D. 2001. Nest predation and neotropical migrant songbirds: piecing together the fragments. Wildlife Society Bulletin 29: 52–61.

    Google Scholar 

  • Iverson L.R. 1989. Land use changes in Illinois, USA: the influence of landscape attributes on current and historic land use. Landscape Ecology 2: 45–61.

    Google Scholar 

  • Jaeger J.A.G. 2000. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecology 15: 115–130.

    Google Scholar 

  • Kareiva P. and Wennergren U. 1995. Connecting Landscape Patterns to Ecosystem and Population Processes. Nature 373: 299–302.

    Article  CAS  Google Scholar 

  • Keitt T.H., Urban D. and Milne B.T. 1997. Detecting critical scales in fragmented landscapes. Conservation Ecology 1: 4.

    Google Scholar 

  • Krummel J.R., Gardner R.H., Sugihara G., O’Neill R.V. and Coleman P.R. 1987. Landscape patterns in a disturbed environment. Oikos 48: 321–324.

    Google Scholar 

  • Li H. and Reynolds J.F. 1993. A new contagion index to quantify spatial patterns of landscapes.Landscape Ecology 8: 155–162.

    Article  Google Scholar 

  • Mancke R.G. and Gavin T.H., 2000. Breeding bird density in woodlots: effects of depth and buildings at the edges. Ecological Applications 10: 598–611.

    Google Scholar 

  • McGarigal K. 2002. Landscape pattern metrics. In: El-Shaarawi A.H. and Piegorsch W.W. (eds), Encyclopedia of Environmentrics, Volume 2, pp. 1135–1142. John Wiley & Sons, Sussex, England.

    Google Scholar 

  • McGarigal K., Cushman S.A., Neel M.C. and Ene E. 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst, Massachusetts, USA. Available at the following web site:www.umass.edu/landeco/research/fragstats/fragstats.html.

  • McGarigal K. and Marks B.J. 1995. FRAGSTATS: a spatial pattern analysis program for quantifying landscape structure. USDA Forest Service. GTR PNW-351.

  • McGarigal K. and McComb W.C. 1995. Relationships between landscape structure and breeding birds in the Oregon Coast Range. Ecological Monographs 65: 235–260.

    Google Scholar 

  • Merriam D.F. and Sneath P.H.A. 1966. Quantitative comparison of contour maps. Journal of Geophysical Research 71: 1105–1115.

    Google Scholar 

  • Milne B.T. 1988. Measuring the fractal geometry of landscapes. Applied Mathematics and Computation 27: 67–79.

    Google Scholar 

  • Moilanen A. and Nieminen M. 2002. Simple connectivity measures in spatial ecology. Ecology 83: 1131–1145.

    Google Scholar 

  • O’Neill R.V., Hunsaker C.T., Jones K.B., Riitters K.H., Wickham J.D., Schwartz P.M., Goodman I.A., Jackson B.L. and Baillargeon W.S. 1997. Monitoring environmental quality at the landscape scale. BioScience 47: 513–519.

    Google Scholar 

  • O’Neill R.V., Hunsaker C.T., Timmins S.P., Timmins B.L., Jackson K.B., Jones K.B., Riitters K.H. and Wickham J.D. 1996. Scale problems in reporting landscape pattern at the regional scale. Landscape Ecology 1: 169–180.

    Google Scholar 

  • Riitters K., Wickham J., O’Neill R., Jones B. and Smith E. 2000. Global-scale patterns of forest fragmentation. Conservation Ecology 4: 27–56.

    Google Scholar 

  • Riitters K.H., O’Neill R.V., Hunsaker C.T., Wickham J.D., Yankee D.H., Timmins S.P., Jones K.B. and Jackson B.L. 1995. A factor analysis of landscape pattern and structure metrics. Landscape Ecology 10: 23–39.

    Article  Google Scholar 

  • Ripple W.J., Bradshaw G.A. and Spies T.A. 1991. Measuring forest landscape patterns in the Cascade Range of Oregon, USA. Biological Conservation 57: 00–00.

    Google Scholar 

  • Robinson A.H. 1962. Mapping the correspondence of isarithmic maps. Annals of the Association of American Geographers 52: 414–425.

    Google Scholar 

  • Robinson A.H. and Bryson R.A. 1957. A method for describing quantitatively the correspondence of geographical distributions. Annals of the Association of American Geographers 47: 379–391.

    Google Scholar 

  • SAS Institute 1999. SAS, Version 8. 01. SAS Institute Incorporated, Cary, North Carolina, USA.

    Google Scholar 

  • Saupé D. 1988. Algorithms for random fractals.. In: Peitgen H.-O. and Saupé D. (eds), The Science of Fractal images, pp. 71–113. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Saura S. 2002. Effects of minimum mapping unit on land cover data spatial configuration and composition. International Journal of Remote Sensing 23: 4853–4880.

    Google Scholar 

  • Saura S. and Martínez-Millán J. 2000. Landscape patterns simulation with a modified random clusters method. Landscape Ecology 15: 661–678.

    Article  Google Scholar 

  • Schumaker N.H. 1996. Using landscape indices to predict habitat connectivity. Ecology 77: 1210–1225.

    Google Scholar 

  • Stauffer D.F. 1985. Introduction to Percolation Theory. Taylor and Francis, London, UK.

    Google Scholar 

  • The MathWorks Inc. 2001. MATLAB, Natick, Massachusetts, USA.

  • Trzcinski M.K., Fahrig L. and Merriam G. 1999. Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. Ecological Applications 9: 586–593.

    Google Scholar 

  • Turner M.G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20: 171–197.

    Article  Google Scholar 

  • Turner M.G. and Ruscher C.L. 1988. Changes in the spatial patterns of lands use in Georgia. Landscape Ecology 1: 241–251.

    Article  Google Scholar 

  • Wickham J.D., Jones K.B., Riitters KH., Wade T.G. and O’Neill R.V. 1999. Transitions in forest fragmentation: implications for restoration opportunities at regional scales. Landscape Ecology 14: 137–145.

    Google Scholar 

  • Wickham J.D., Riitters K.H., O’Neill R.V., Reckhow K.H., Wade T.G. and Jones K.B. 2000. Land cover as a framework for assessing risk of water pollution. Journal of the American Water Resources Association 36: 1417–1422.

    Google Scholar 

  • With K.A., Gardner R.H. and Turner M.G. 1997. Landscape connectivity and population distributions in heterogeneous environments. Oikos 78: 151–169.

    Google Scholar 

  • With K.A. and King A.W. 2001. Analysis of landscape sources and sinks: the effect of spatial pattern on avian demography. Biological Conservation 100: 75–88.

    Article  Google Scholar 

  • Wu J.G., Shen W.J., Sun W.Z. and Tueller P.T. 2002. Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology 17: 761–782.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maile C. Neel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neel, M.C., McGarigal, K. & Cushman, S.A. Behavior of class-level landscape metrics across gradients of class aggregation and area. Landscape Ecol 19, 435–455 (2004). https://doi.org/10.1023/B:LAND.0000030521.19856.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:LAND.0000030521.19856.cb

  • Connectivity
  • Fragmentation
  • Landscape pattern analysis
  • Neutral landscape models
  • FRAGSTATS