Landscape Ecology

, Volume 19, Issue 2, pp 181–195 | Cite as

Landscape metrics with ecotones: pattern under uncertainty

  • C. Arnot
  • P.F. FisherEmail author
  • R. Wadsworth
  • J. Wellens


Landscape metrics are in widespread use, but previous research has highlighted problems over scale and error in the reliability of the metric values. This paper explores the variation of metric values when it is hard to distinguish exactly where one land cover type changes into another; when the ecotone is not an abrupt transition, but has a spatial extent in its own right. The values of metrics are explored in a landscape classified, using satellite imagery and the fuzzy c-means classifier, into fuzzy sets so that every location has a degree of belonging to all classes. The result is that any ecotone can be characterised by a variety of metric values depending on the degree to which a location is in any particular land cover class. The values recorded show some similarities, however, to those for an interpretation of the same landscape with abrupt changes, but the nature of that similarity varies unpredictably between metrics and classes. This analysis provides a limited degree of reassurance for those using metric analysis where the boundaries may have spatial extent, but much further work is required to establish an improved description of metrics under this condition.

Ecotones Intergrades Landscape metrics Fuzzy classification Remote sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker W.L. and Cai Y.M. 1992. The role programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology 7: 291–302.CrossRefGoogle Scholar
  2. Bastin L. 1997. Comparison of fuzzy c-mean classification, linear mixture modelling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing 17: 3629–3648.CrossRefGoogle Scholar
  3. Bezdek J.C., Ehrlich R. and Full W. 1984. FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences 10: 191–203.CrossRefGoogle Scholar
  4. Bissonette J.A. (Editor) 1997. Wildlife and Landscape Ecology: Effects of Pattern and Scale. Springer-Verlag, New York, New York, USA.Google Scholar
  5. Burrough P.A. 1996. Natural objects with indeterminate boundaries. In: Burrough P.A. and Frank A. (eds), Spatial Conceptual Models for Geographic Objects with Undetermined Boundaries, pp.3–28. Taylor & Francis, London, UK.Google Scholar
  6. Burrough P.A. and Frank A. (Editors) 1996. Spatial Conceptual Models for Geographic Objects with Undetermined Boundaries. Taylor & Francis, London, UK.Google Scholar
  7. Cain D.H., Riitters K. and Orvis K. 1997. A multi-scale analysis of landscape statistics. Landscape Ecology 12: 199–212.CrossRefGoogle Scholar
  8. Fisher P.F. 1997. The pixel: a snare and a delusion. International Journal of Remote Sensing 18: 679–685.CrossRefGoogle Scholar
  9. Fisher P.F. 1998. Is GIS hidebound by the legacy of cartography? Cartographic Journal 35: 5–9.Google Scholar
  10. Fisher P.F. 2000a. Sorities paradox and vague geographies. Fuzzy Sets and Systems 113: 7–18.CrossRefGoogle Scholar
  11. Fisher P.F. 2000b. Fuzzy Modelling. In: Openshaw S., Abrahart R. and Harris T. (eds), Geocomputation, pp 161–186. Taylor & Francis, London, UK.Google Scholar
  12. Fisher P.F. and Pathirana S. 1990. The evaluation of fuzzy membership of land cover classes in the suburban zone. Remote Sensing of Environment 34: 121–132.CrossRefGoogle Scholar
  13. Fonte C.C. and Lodwick W.A. in press. Areas of fuzzy geographical entities. International Journal of Geographical Information Science.Google Scholar
  14. Foody G.M. 1992. A fuzzy sets approach to the representation of vegetation continua from remotely sensed data: An example from lowland heath. Photogrammetric Engineering and Remote Sensing 58: 221–225.Google Scholar
  15. Foody G.M. 1996. Approaches to the production and evaluation of fuzzy land cover classification from remotely-sensed data. International Journal of Remote Sensing 17: 1317–1340.Google Scholar
  16. Forman T.T. and Godron M. 1986. Landscape Ecology. Wiley, Chichester, UK.Google Scholar
  17. Fortin M.-J. 1994. Edge detection algorithms for two dimensional ecological data. Ecology 75: 956–965.CrossRefGoogle Scholar
  18. Fortin M.-J. and Drapeau P. 1995. Delineation of ecological boundaries: Comparison of approaches and significance tests. Oikos 72: 323–332.Google Scholar
  19. Fortin M.-J. and Edwards G. 2001. Delineation and analysis of vegetation boundaries. In: Hunsaker C.T., Goodchild M.F., Friedl M.A. and Case T.J. (eds), Spatial Uncertainty in Ecology, pp. 158–174. Springer-Verlag, New York, New York, USA.Google Scholar
  20. Fortin M.-J., Olson R.J., Ferson S., Iverson L., Hunsaker C., Edwards G., Levice D., Butera K. and Klemas V. 2000. Issues related to the detection of boundaries. Landscape Ecology 15: 453–466.CrossRefGoogle Scholar
  21. Hess G. 1994. Pattern and error in landscape ecology: A commentary. Landscape Ecology 9: 3–5.CrossRefGoogle Scholar
  22. Hess G. and Bay J.M. 1997. Generating confidence intervals for composition-based landscape indexes. Landscape Ecology 12: 309–320.CrossRefGoogle Scholar
  23. Hunsaker C.T., Goodchild M.F., Friedl M.A. and Case T.J. (Editors) 2001. Spatial Uncertainty in Ecology. Springer-Verlag, New York, New York, USA.Google Scholar
  24. Legrendre P. and Legrendre L. 1998. Numerical Ecology, 2nd Edition. Elsevier, Amsterdam, The Netherlands.Google Scholar
  25. Levin S.A. 1992. The Problem of Pattern and Scale in Ecology. Ecology 73: 1943–1967.CrossRefGoogle Scholar
  26. Loehle C., Li B-L. and Sundell R.C. 1996. Forest spread and phase transitions at forest-prairie ecotones in Kansas, U.S.A. Landscape Ecology 11: 225–235.CrossRefGoogle Scholar
  27. McGarigal K. and Marks B.J. 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA Forest Service General. Technical Report PNW-351.Google Scholar
  28. Millington A.C. 1996. Mapa de Comunidades Vegetales de la Estacion Biologica del Beni — Reserva de la Biosphera. Trinidad, Bolivia, Primer Congreso Internacional.Google Scholar
  29. Mladenoff D.J. and DeZonia B. n.d. APACK Landscape analysis package. Scholar
  30. Moraczewski I.R. 1993a. Fuzzy logic for phytosociology 2 Generalizations and prediction. Vegetatio 106: 13–20.CrossRefGoogle Scholar
  31. Moraczewski I.R. 1993b. Fuzzy logic for phytosociology 1 Syntaxa as vague concepts. Vegetatio 106: 1–1.CrossRefGoogle Scholar
  32. O'Neill R.V., DeAngelis D.L., Waide J.B. and Allen T.F.H. 1986. A Hierarchical Concept of Ecosystems. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  33. Riitters K.H., O'Neil R.V., Hunsaker C.T., Wickham J.D., Yankee D.H., Timmins S.P., Jones K.B. and Jackson B.L. 1995. A factor analysis of landscape pattern and structure metrics. Landscape Ecology 10: 23–39.CrossRefGoogle Scholar
  34. Roberts D.W. 1989. Fuzzy systems vegetation theory. Vegetatio 83: 71–80.CrossRefGoogle Scholar
  35. Robinson V.B. 2003. A perspective on the fundamentals of fuzzy sets and their use in geographic information systems. Transactions in GIS 7: 3–30.CrossRefGoogle Scholar
  36. Robinson V.B. and Thongs D. 1986. Fuzzy set theory applied to the mixed pixel problem of multispectral landcover databases. In: Opitz B. (ed.), Geographic Information Systems in Government, pp. 871885. A Deerpak Publishing, Hampton, Virginia, USA.Google Scholar
  37. Shao G., Liu D. and Zhao G. 2001. Relationships of image classification accuracy and variation of landscape statistics. Canadian Journal of Remote Sensing 27: 33–43.Google Scholar
  38. Turner M.G. 1989. Landscape Ecology: The Effect of Pattern on Process. Annual Review of Ecological Systems 20: 171–197.CrossRefGoogle Scholar
  39. Turner M.G. and Gardner R. H. (Editors) 1991. Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, New York, USA.Google Scholar
  40. Wang F. and Hall G.B. 1996. Fuzzy representation of geographical boundaries. International Journal of Geographical Information Systems 10: 573–590.CrossRefGoogle Scholar
  41. Wellens J., Millington A.C., Hickin W., Arquepino R. and Jones S. 2000. Vegetation Mapping for Habitat Classification in Bolivia. In: Alexander R. and Millington A.C. (eds), Vegetation Mapping from Patch to Planet. Wiley, Chichester, UK.Google Scholar
  42. Wellens J., Millington A.C., Hickin W., Arquepino R. and Jones S. 1999. Vegetation Mapping for Habitat Studies in the Amazonian Lowlands of Bolivia. In: Proc. Congreso Internacional Investigation y Manejo en la Reserva de la Biosfera de la Estacion Biologica del Beni. Smithsonian Institution, Washington DC, USA.Google Scholar
  43. Wickham J.D. and Riitters K.H. 1995. Sensitivity of landscape metrics to pixel size. International Journal of Remote Sensing 16: 3585–3594.Google Scholar
  44. Wiens J.A. 1997. Metapopulation Dynamics and Landscape Ecology. In: Hanski I.A. and Gilpin M.E. (eds), Metapopulation Biology: Ecology and Genetics, pp. 43–62. Academic Press, San Diego, California, USA.Google Scholar
  45. Wu J., Shen W., Sun W. and Tueller P.T. 2002. Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology 17: 761–782.CrossRefGoogle Scholar
  46. Zhu A-Z. 2001. Modeling spatial variation of classification accuracy under fuzzy logic. In: Hunsaker C.T., Goodchild M.F., Friedl M.A. and Case T.J. (eds), Spatial Uncertainty in Ecology, pp. 330–350. Springer-Verlag, New York, New York, USA.Google Scholar
  47. Zhang J. and Foody G.M. 1998. A fuzzy classicication of sub-urban land cover from remotely sensed imagery. International Journal of Remote Sensing 19: 2721–2738.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • C. Arnot
    • 1
  • P.F. Fisher
    • 1
    Email author
  • R. Wadsworth
    • 1
  • J. Wellens
    • 1
  1. 1.Department of GeographyUniversity of LeicesterLeicesterUnited Kingdom

Personalised recommendations