Landscape Ecology

, Volume 18, Issue 8, pp 791–805 | Cite as

Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape?

  • Goedele Verbeylen
  • Luc De Bruyn
  • Frank Adriaensen
  • Erik Matthysen
Article

Abstract

In determining isolation effects in fragmented populations, the landscape matrix is not often considered. Usually simple distance measures are used to quantify degree of isolation. We tested the effect of the matrix on the presence of red squirrels in 354 wooded patches in the Brussels Region, by comparing several isolation measures. These were 1) distance to the nearest source patch, 2) the Hanski-measure (a combination of distance to and size of all possible sources), 3) effective distances calculated from different least cost models using the ArcView grid extension ‘Cost Distance’ (a combination of distance and resistance of the landscape, with different resistances for different landscape types) and 4) some combinations of the Hanski-measure and the effective distances. Size and quality of the target patches were always included in the tests of the predictive power of different isolation measures on squirrel presence/absence. All variables examined (patch size, quality and isolation) significantly influenced squirrel presence. Models using the effective distances gave the best results. Models including the Hanski-measure improved significantly when Euclidean distance was replaced by effective distance, showing that parameterisation of matrix resistance added significant additional explanatory power when modelling squirrel presence.

Red squirrel Cost Distance Effective distance GIS Landscape resistance Patch isolation Patch quality Patch size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaensen F., Chardon J.P., De Blust G., Swinnen E., Villalba S., Gulinck H. and Matthysen E. 2003. The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning 996: 1–15.Google Scholar
  2. Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.CrossRefGoogle Scholar
  3. Andrén H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71: 355–366.Google Scholar
  4. Asferg T., Moller Nielsen S., Rosengaard M. and Bertelsen J. 1997. Presence/absence of red squirrels Sciurus vulgaris in Danish woodlots: demonstration of fragmentation effects. In: Proceedings of the 3rd European Squirrel Workshop, Bavaria, Germany. Säugetierkundliche Informationen 21.Google Scholar
  5. Bak A. and Lagendijk A. 1995. Ruimtegebruik van de rode eekhoorn, Sciurus vulgaris L., in een gefragmenteerd habitat. Undergraduate Thesis n° D951220, University of Utrecht, Utrecht, The Netherlands.Google Scholar
  6. Bélisle M. and St. Clair C.C. 2001. Cumulative effects of barriers on the movements of forest birds. Conservation Ecology (online) 5(2): art. 9. http://www.consecol.org/vol5/iss2/art9Google Scholar
  7. Berggren Å., Carlson A. and Kindvall O. 2001. The effect of landscape composition on colonization success, growth rate and dispersal in introduced bush-crickets Metrioptera roeseli. Journal of Animal Ecology 70: 663–670.CrossRefGoogle Scholar
  8. Bunn A.G., Urban D.L. and Keitt T.H. 2000. Landscape connectivity: A conservation application of graph theory. Journal of Environmental Management 59(4): 265–278.CrossRefGoogle Scholar
  9. Celada C., Bogliani G., Gariboldi A. and Maracci A. 1994. Occupancy of isolated woodlots by the red squirrel Sciurus vulgaris L. in Italy. Biological Conservation 69: 177–183.CrossRefGoogle Scholar
  10. Chardon J.P., Adriaensen F. and Matthysen E. 2003. Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecology 18: 561–573.CrossRefGoogle Scholar
  11. Delin A. and Andrén H. 1999. Effects of habitat fragmentation on Eurasian red squirrel (Sciurus vulgaris) in a forest landscape. Landscape Ecology 14: 67–72.CrossRefGoogle Scholar
  12. Dunning J.B.Jr., Danielson B.J., Noon B.R., Root T.L., Lamberson R.H., Stevens E.E. and Stewart D.J. 1995. Spatially explicit population models: current forms and future uses. Ecological Applications 5(1): 3–11.CrossRefGoogle Scholar
  13. Ferreras P. 2001. Landscape structure and asymmetrical interpatch connectivity in a metapopulation of the endangered Iberian lynx. Biological Conservation 100: 125–136.CrossRefGoogle Scholar
  14. Gonzales E.K. 2000. Distinguishing between modes of dispersal by introduced eastern grey squirrels (Sciurus carolinensis). Master's Thesis, University of Guelph, Guelph, Canada. http://www.uoguelph.ca/zoology/research/squirrel/thesisrev.pdfGoogle Scholar
  15. Graham C.H. 2001. Factors influencing movement patterns of Keel-billed Toucans in a fragmented tropical landscape in Southern Mexico. Conservation Biology 15(6): 1789–1798.CrossRefGoogle Scholar
  16. Halpin P.N. and Bunn A.G. 2000. Using GIS to compute a least-cost distance matrix: a comparison of terrestrial and marine ecological applications. Proceedings of the Twentieth Annual ESRI User Conference, June 2000. http://www.esri.com/library/userconf/proc00/professional/papers/PAP890/p890.htmGoogle Scholar
  17. Hanski I. 1994. A practical model of metapopulation dynamics. Journal of Animal Ecology 63: 151–162.CrossRefGoogle Scholar
  18. Harms W.B. and Opdam P. 1989. Woods as habitat patches for birds: application in landscape planning in the Netherlands. In: Zonneveld I.S. and Forman R.T.T. (eds), Changing landscapes: an ecological perspective, pp. 73-97. Springer-Verlag, New York, New York, USA.Google Scholar
  19. Harrison S. and Bruna E. 1999. Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography 22: 225–232.CrossRefGoogle Scholar
  20. Hastings A. 1996. Models of spatial spread: a synthesis. Biological Conservation 78(1-2): 143-148.CrossRefGoogle Scholar
  21. IBGE-BIM 2001. Maps ‘Omtrek BHG’ and ‘Begroening — eilanden': URBIS 104, maps ‘Gebieden', ‘Zones ngi', ‘Gebieden en vijvers’ and ‘Kanaal’: Gegevensbank Groen Netwerk, 1998. Maps of the Brussels Institute for Environmental Management, DEV-AGR, Brussels, Belgium.Google Scholar
  22. Johnson A.R., Wiens J.A., Milne B.T. and Crist T.O. 1992. Animal movements and population dynamics in heterogeneous landschapes. Landscape Ecology 7: 63–75.Google Scholar
  23. Kareiva P.M. 1983. Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia 57: 322–327.CrossRefGoogle Scholar
  24. Matthysen E. 1999. Nuthatches (Sitta europaea: Aves) in forest fragments: demography of a patchy population. Oecologia 119: 501–509.CrossRefGoogle Scholar
  25. Michels E., Cottenie K., Neys L., De Gelas K., Coppin P. and De Meester L. 2001. Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology 10: 1929–1938.PubMedCrossRefGoogle Scholar
  26. Moilanen A. and Nieminen M. 2002. Simple connectivity measures in spatial ecology. Ecology 83: 1131–1145.CrossRefGoogle Scholar
  27. Nagelkerke N.J.D. 1991. A note on a general definition of the coefficient of determination. Biometrika 78: 691–692.CrossRefGoogle Scholar
  28. NGI 1994. Topografische kaart van België, kaartbladen Wemmel 31/2 Noord, Anderlecht 31/2 Zuid, Brussel 31/3 Noord, Brussel 31/3 Zuid, Zaventem 31/4 Noord, Sint-Pieters-Woluwe 31/4 Zuid, Sint-Pieters-Leeuw 31/6 Noord, Ukkel 31/7 Noord, Linkebeek 31/7 Zuid, Tervuren 31/8 Noord (schaal 1:10000). Nationaal Geografisch Instituut, Belgium.Google Scholar
  29. Pickett S.T.A., Cadenasso M.L., Grove J.M., Nilon C.H., Pouyat R.V., Zipperer W.C. and Costanza R. 2001. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Ann. Rev. Ecol. Syst. 32: 127–157.CrossRefGoogle Scholar
  30. Quinby P., Trombulak S., Lee T., Lane J., Henry M., Long R. and MacKay P. 1999. Opportunities for wildlife habitat connectivity between Algonquin Park, Ontario and the Adirondack Park, New York. Report prepared for The Greater Laurentian Wildlands Project, Burlington, Vermont. Ancient Forest Exploration & Research, Toronto. http://www.ancientforest.org/a2a.htmlGoogle Scholar
  31. Ricketts T.H. 2001. The matrix matters: effective isolation in fragmented landscapes. The American Naturalist 158: 87–99.CrossRefPubMedGoogle Scholar
  32. Rodríguez A. and Andrén H. 1999. A comparison of Eurasian red squirrel distribution in different fragmented landscapes. Journal of Applied Ecology 36: 649–662.CrossRefGoogle Scholar
  33. SAS 1989. SAS/STAT User's Guide, version 6, 4th edn., Vol. 1 and 2. SAS Institute, Cary, North Carolina, USA.Google Scholar
  34. Schippers P., Verboom J., Knaapen J.P. and van Apeldoorn R.C. 1996. Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS-based random walk model. Ecography 19: 97–106.CrossRefGoogle Scholar
  35. Singleton P.J. and Lehmkuhl J.F. 2000. I-90 Snoqualmie Pass. Wildlife Habitat Linkage Assessment. Final Report. Wenatchee Forestry Sciences Lab, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Wenatchee, Washington, USA. http://www.wsdot.wa.gov/PPSC/Research/TestI(90/I-90May)2000.htmGoogle Scholar
  36. Sukopp H., Hejny S. and Kowarik I. 1990. Urban Ecology. Plants and plant communities in urban environments. SPB Academic Publishing bv, Den Haag, The Netherlands.Google Scholar
  37. Taylor P.D., Fahrig L., Henein K. and Merriam G. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571–573.Google Scholar
  38. Tischendorf L. 1997. Modelling individual movements in heterogeneous landscapes: potentials of a new approach. Ecological Modelling 103: 33–42.CrossRefGoogle Scholar
  39. Tischendorf L. and Fahrig L. 2000. On the use and measurement of landscape connectivity. Oikos 90: 7–19.CrossRefGoogle Scholar
  40. Tittensor A.M. 1970. Red squirrel dreys. Notes from the Mammal Society No. 21: 528–533.Google Scholar
  41. Tscharntke T., Steffan-Dewenter I., Kruess A. and Thies C. 2002. Characteristics of insect populations on habitat fragments: a mini review. Ecological Research 17: 229–239.CrossRefGoogle Scholar
  42. van Apeldoorn R.C., Celada C. and Nieuwenhuizen W. 1994. Distribution and dynamics of the red squirrel (Sciurus vulgaris L.) in a landscape with fragmented habitat. Landscape Ecology 9: 227–235.CrossRefGoogle Scholar
  43. Verbeylen G., De Bruyn L. and Matthysen E. 2003. Patch occupancy, population density and dynamics in a fragmented red squirrel Sciurus vulgaris population. Ecography 26: 118–128.CrossRefGoogle Scholar
  44. Villalba S., Gulinck H., Verbeylen G. and Matthysen E. 1998. Relationship between patch connectivity and the occurrence of the European red squirrel, Sciurus vulgaris, in forest fragments within heterogeneous landscapes. In: Dover J.W. and Bunce R.G.H. (eds), Key Concepts in Landscape Ecology, pp. 205-220. IALE, Preston, UK.Google Scholar
  45. Vos C.C., Antonisse-De Jong A.G., Goedhart P.W. and Smulders M.J.M. 2001a. Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86: 598–608.PubMedCrossRefGoogle Scholar
  46. Vos C.C., Verboom J., Opdam P.F.M. and Ter Braak C.J.F. 2001b. Towards ecologically scaled landscape indices. American Naturalist 157: 24–41.CrossRefPubMedGoogle Scholar
  47. Walker R. and Craighead L. 1997. Analyzing wildlife movement corridors in Montana using GIS. In: Proceedings of the 1997 ESRI European User Conference, Copenhagen, Norway. ESRI, Redlands, California, USA. http://www.esri.com/library/userconf/proc97/proc97/to150/pap116/p116.htmGoogle Scholar
  48. Wauters L.A. and Dhondt A.A. 1988. The use of red squirrel (Sciurus vulgaris) dreys to estimate population density. Journal of Zoology 214: 179–187.Google Scholar
  49. Wauters L. and Dhondt A.A. 1990. Nest-use by red squirrels (Sciurus vulgaris Linnaeus, 1758). Mammalia 54: 377–389.CrossRefGoogle Scholar
  50. Wauters L., Swinnen C. and Dhondt A.A. 1992. Activity budget and foraging behaviour of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. Journal of Zoology 227: 71–86.CrossRefGoogle Scholar
  51. Wauters L., Casale P. and Dhondt A.A. 1994. Space use and dispersal of red squirrels in fragmented habitats. Oikos 69: 140–146.Google Scholar
  52. Wauters L.A., Currado I., Mazzoglio P.J. and Gurnell J. 1997. Replacement of red squirrels by introduced grey squirrels in Italy: evidence from a distribution survey. In: Gurnell J. and Lurz P. (eds), The Conservation of Red Squirrels, Sciurus vulgaris L., pp. 79-88. People's Trust for Endangered Species, London, UK.Google Scholar
  53. Whitcomb R.F., Robbins C.S., Lynch J.F., Whitcomb B.L., Klimkiewicz M.K. and Bystrak D. 1981. Effects of forest fragmentation on avifauna of the eastern deciduous forest. In: Burgess R.L. and Sharpe D.M. (eds), Forest island dynamics in man-dominated landscapes, pp. 125-206. Springer-Verlag, Berlin, Germany.Google Scholar
  54. Xu J. and Lathrop R.G.J. 1995. Improving simulation accuracy of spread phenomena in a raster-based Geographic Information System. International Journal of Geographical Information Systems 9: 153–168.Google Scholar
  55. Zammit A.E. 1999. A Proposal for Identifying Wildlife Corridors Using Geographic Information Systems. University of Waterloo, Department of Geography, Waterloo, Ontario, Canada.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Goedele Verbeylen
    • 1
  • Luc De Bruyn
    • 2
    • 3
  • Frank Adriaensen
    • 1
  • Erik Matthysen
    • 1
  1. 1.Department of Biology - Laboratory of Animal EcologyUniversity of Antwerp (UIA)AntwerpBelgium
  2. 2.Institute for Forestry and Game ManagementGeraardsbergenBelgium
  3. 3.Department of Biology - Evolutionary Biology GroupUniversity of Antwerp (RUCA)AntwerpBelgium

Personalised recommendations