Skip to main content
Log in

Investigation of IrO2/SnO2 thin film evolution by thermoanalytical and spectroscopic methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The formation mechanism of thermally prepared IrO2/SnO2 thin films has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry (TG-MS) and infrared emission spectroscopy (IRES). Mixtures of varying composition of the precursor salts (SnCl2·2H2O dissolved in ethanol and IrCl3·3H2O dissolved in isopropanol) were prepared onto titanium metal supports. Then the solvent was evaporated and the gel-like films were heated in an atmosphere containing 20% O2 and 80% Ar to 600°C. The thermogravimetric curves showed that the evolution of the oxide phases take place in several decomposition stages and the final mixed oxide film is formed between 490 and 550°C, depending on the noble metal content. Mass spectrometric ion intensity curves revealed that below 200°C crystallization water, residual solvent, and hydrogen-chloride (formed as a result of an intramolecular hydrolysis) are liberated. The decomposition of surface species (surface carbonates, carbonyls and carboxylates) formed via the interaction of the residual solvent with the precursor salts takes place up to 450°C as evidenced by emission Fourier transform infrared spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Trasatti (Ed.), Electrodes of Conductive Metal Oxides, Elsevier, Amsterdam, Part A, 1980; Part B,1981.

  2. F. Cardarelli, P. Taxil, A. Savall, Ch. Comninellis, G. Manoli and O. Leclerc, J. Appl. Electrochem., 28 (1998)245.

    Article  CAS  Google Scholar 

  3. S. Trasatti, Electrochim. Acta, 45 (2000)2377.

    Article  CAS  Google Scholar 

  4. M. Morimitsu, H. Tamura, M. Matsunaga and R. Otogawa, J. Appl. Electrochem., 30 (2000)511.

    Article  CAS  Google Scholar 

  5. C. Bock, H. Spinney and B. MacDougall, J. Appl. Electrochem., 30 (2000)523.

    Article  CAS  Google Scholar 

  6. L. K. Xu and J. D. Scantlebury, Corrosion Sci., 45 (2003)2727.

    Article  Google Scholar 

  7. R. Mraz and J. Krysa, J. Appl. Electrochem., 24 (1994)1262.

    Article  CAS  Google Scholar 

  8. Ch. Comninellis and G. P. Vercesi, J. Appl. Electrochem., 21 (1991)335.

    Article  CAS  Google Scholar 

  9. J. Rolewicz, Ch. Comninellis, E. Plattner and J. Hinden, Electrochim. Acta, 33 (1988)573.

    Article  CAS  Google Scholar 

  10. L. K. Xu and J. D. Scantlebury, J. Electrochem. Soc., 150 (2003) B254.

    Google Scholar 

  11. W. Gobel and K. D. Schierbaum, Sens. Actuat. B-Chem, 26/27 (1995)1.

  12. P. P. Tsai, I. C. Chen and M. H. Tzeng, Sens. Actuat. B-Chem, 24/25 (1995)537.

  13. A. Chaturvedi, V. N. Mishra, R. Dwivedi and S. K. Srivastava, Microel. J., 30 (1999)259.

    Article  CAS  Google Scholar 

  14. B. Gautheron, M. Labeau, G. Delabougliser and U. Schmatz, Sens. Actuat. B-Chem, 15/16 (1993)357.

    Article  Google Scholar 

  15. J. Kristóf, J. Liszi, P. Szabó, A. Berbieri and A. De Battisti, J. Appl. Electrochem., 23 (1993)615.

    Article  Google Scholar 

  16. K. Mészáros-Szécsényi, J. Päiväsaari, M. Putkonen, L. Niinistö and G. Pokol, J. Therm. Anal. Cal., 69 (2002) 65.

    Google Scholar 

  17. M. Krunks, J. Madarász, T. Leskelä, A. Mere, L. Niinistö and G. Pokol, J. Therm. Anal. Cal., 72 (2003)497.

    Article  CAS  Google Scholar 

  18. J. Kristóf, J. Mihály, S. Daolio, A. De Battisti, L. Nanni and C. Piccirillo, J. Electroanal. Chem., 434 (1997) 99.

    Google Scholar 

  19. N. Chiondini, F. Meinardi, A. Paleari, R. Scotti and G. Spinolo, Solid State Commun., 109 (1999)145.

    Article  Google Scholar 

  20. H. Yunpu, L. Yadong, Y. Juan and Q. Yitai, Mater. Lett., 40 (1999)823.

    Google Scholar 

  21. B. Thangaraju, Thin Solid Films, 402 (2002) 71.

  22. A. Cabot, A. Diezguez, A. Romano-Rodriguez, J. R. Morate and N. Barsan, Sens. Actuat. B-Chem, 79 (2001) 98.

    Article  Google Scholar 

  23. S. Seki, T. Aoyama, Y. Sawada, M. Ogawa, M. Sano, N. Miyabayashi, H. Yoshida, Y. Hoshi, M. Ide and A. Shida, J. Therm. Anal. Cal., 69 (2002)1021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horváth, E., Kristóf, J., Frost, R.L. et al. Investigation of IrO2/SnO2 thin film evolution by thermoanalytical and spectroscopic methods. Journal of Thermal Analysis and Calorimetry 78, 687–695 (2004). https://doi.org/10.1023/B:JTAN.0000046128.84995.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000046128.84995.77

Navigation