Skip to main content
Log in

Thermal investigations of cefadroxil complexes with transition metals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The cefadroxil (Cef) complexes with transition divalent metals of the formula MCef·nH2O (where n=2 for M=Cu2+, Ni2+, Zn2+ and n=3 for Co2+) and CdCef1.5·4H2O were prepared and characterized by elemental and infrared spectra. The thermal analysis of the investigated complexes in air atmosphere was carried out by means of simultaneous TG-DSC technique. During heating in air they lose bound water molecules and then decompose to oxides: Co3O4, NiO, CuO, ZnO and CdO. The CdCef1.5·4H2O complex forms probably an intermediate product Cd2OSO4. The combined TG-FTIR technique was employed to study of decomposition pathway of the investigated complexes. The first mass loss step is the water loss of the complexes. Next, decomposition of cefadroxil ligand occurs with evolution of CO2 and NH3. At slightly higher temperature COS is observed according to decomposition of cephem ring. Additionally, as decomposition gaseous products: HCN, HNCO (HOCN), H2CNH, CO, SO2, hydrocarbons and carbonyl compounds were observed. The formation of metal sulfates is postulated as solid intermediate product of decomposition in the argon atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Stephenson and B. A. Diseroad, Int. J. Pharm,198(2000)167

    Article  CAS  Google Scholar 

  2. H. J. Zhu, V. G. Young and D. J. W. Grant, Int. J. Pharm,232(2002) 23.

    Google Scholar 

  3. N. Nikolis, C. Methenitis, G. Pneumatikakis and M. M. L. Fiallo, J. Inorg. Biochem, 89 (2002)131

    Article  CAS  Google Scholar 

  4. J. R. Anacona, J. Coord. Chem,54(2001)355

    CAS  Google Scholar 

  5. F. Drablos, D. G. Nicholson and M. Ronning, Biochim. Biophys. Acta,1431(1999)433

    CAS  Google Scholar 

  6. A. A. Abdel Gaber, O. A. Farghaly, M. A. Ghandour and H. S. El-Said, Monat. Chem, 131 (2000)1031

    Article  Google Scholar 

  7. M. M. Shourky, W. M. Hosny, A. A. Razik and R. A. Mohamed, Talanta,44(1997)2109

    Article  Google Scholar 

  8. J. M. Rollinger, Cs. Novák, Zs. Éhen and K. Marthi, J. Therm. Anal. Cal,73(2003)519

    Article  CAS  Google Scholar 

  9. J. Suuronen, I. Pitkänen, H. Hattunen and R. Moilanen, J. Therm. Anal. Cal,69(2002)359

    Article  CAS  Google Scholar 

  10. S. Materazzi, C. Nugnes, A. Gentili and R. Curini, Thermochim. Acta,369(2001)167

    Article  CAS  Google Scholar 

  11. S. Materazzi, Thermochim. Acta,319(1998)131

    Article  CAS  Google Scholar 

  12. G. N. Kalinkova and L. Dimitrova, Vibr. Spectr,10(1995) 41.

    Article  CAS  Google Scholar 

  13. S. Holly and P. Sohar, Absorption spectra in the infrared region, Akadémiai Kiadó, Budapest 1975, p. 78.

  14. T. Kupka, Spectrochim. Acta, A53 (1997)2649

    Google Scholar 

  15. A. M. Garcia, P. G. Navarro and P. J. Martinez de las Parras, Talanta,46(1998)101

    Article  CAS  Google Scholar 

  16. H.Żegota, M. Koprowski and A.Żegota, Radiat. Phys. Chem,45(1995)223

    Article  Google Scholar 

  17. G. G. Mohamed, Spectrochim. Acta, A57 (2001)1643

    Google Scholar 

  18. M. Webb, P. M. Lart and Ch. Breen, Thermochim. Acta,326(1999)151

    Article  CAS  Google Scholar 

  19. P. S. Bhandare, B. K. Lee and K. Krishnan, J. Thermal Anal,49(1997)361

    Article  CAS  Google Scholar 

  20. M. Horak, D. Papousek, Infracervena spektra a struktura molekul, Academia Praha, 1976, p.741

  21. R. Lu, S. Purushothama, X. Yang, J. Hyatt, W.-P. Pan, J. T. Riley and W. G. Loyd, Fuel Process. Technol,59(1999) 35.

    Article  CAS  Google Scholar 

  22. E. A. Aleksieev, F. Dyubko and V. V. Podnos, J. Mol. Struct,176(1996)316

    Google Scholar 

  23. W. Xie and W.-P. Pan, J. Therm. Anal. Cal,65(2001)669

    Article  CAS  Google Scholar 

  24. K. Nakamura, Y. Nishimura, P. Zetterlund, T. Hatakeyama and H. Hatakeyama, Thermochim. Acta, 282/283 (1996)433

    Article  Google Scholar 

  25. M. E. Jacox and D. E. Milligan, J. Chem. Phys,40(1964)2457

    Article  CAS  Google Scholar 

  26. Y. Hamada, K. Hashiguchi, M. Tsuboi, Y. Koga and S. Kondo, J. Mol. Spectrosc, 70 (1984)105

    Google Scholar 

  27. Y. Nagasawa, M. Hotta and K. Ozawa, Thermochim. Acta,33(1995)253

    CAS  Google Scholar 

  28. M. Wierzejewska and Z. Mielke, Chem. Phys. Lett,349(2001)227

    Article  CAS  Google Scholar 

  29. M. Reggers, M. Ruysen, R. Carleer and J. Mullens, Thermochim. Acta,295(1997)107

    Article  CAS  Google Scholar 

  30. T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated, VolumeI, National Bureau of Standards, 1972, 1-160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrozek- Łyszczek, R. Thermal investigations of cefadroxil complexes with transition metals. Journal of Thermal Analysis and Calorimetry 78, 473–486 (2004). https://doi.org/10.1023/B:JTAN.0000046112.27166.91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000046112.27166.91

Navigation