Skip to main content
Log in

PE/Org-MMT nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization kinetics of polyethylene (PE), PE/organic-montmorillonite (Org-MMT) composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples very well. The difference in the exponent n between PE and PE/Org-MMT nanocomposites, indicated that non-isothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PE and PE/Org-MMT composites, but the crystallization rate of PE/Org-MMT composite was faster than that of PE at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PE very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PE/Org-MMT was greatly larger than that of PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. Messersmith and E. P. Giannelis, J. Polym. Sci. Part A: Polym. Chem., 33 (1995) 1047.

    Article  CAS  Google Scholar 

  2. A. Usuki, T. Kawasumi, M. Kojima, Y. Fukushima and A. Okada, J. Mater. Res., 8 (1993) 1179.

    CAS  Google Scholar 

  3. Y. Kojima, A. Usuki, M. Kawasumi, Y. Fukushima, A. Okada and T. Kurauchi, J. Mater. Res., 8 (1993) 1185.

    CAS  Google Scholar 

  4. K. Yano, A. Usuki, A. Okada, T. Kurauchi and O. Kamigato, J. Polym. Sci. Part A: Polym. Chem., 31 (1993) 2493.

    Article  CAS  Google Scholar 

  5. E. P. Giammelis, Adv. Mater., 8 (1996) 29.

    Article  Google Scholar 

  6. Z. Wang and T. J. Piammavaia, Chem. Mater., 10 (1998) 3769.

    Article  CAS  Google Scholar 

  7. W. B. Xu, M. I. Ge and P. S. He, J. Appl. Polym. Sci., 82 (2001) 2281.

    Article  CAS  Google Scholar 

  8. W. B. Xu, Z. F. Zhou, M. L. Ge and W.-P. Pan, J. Therm. Anal. Cal., 78 (2004) 91.

    Article  CAS  Google Scholar 

  9. W. B. Xu, S. P. Bao and P. S. He, J. Polym. Sci., 84 (2002) 842.

    CAS  Google Scholar 

  10. P. Hoai Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa and A. Usuki, Polymer, 42 (2001) 9633.

    Article  Google Scholar 

  11. M. Alexandre, P. Dubois, T. Sun, J. M. Garces and R. Jerome, Polymer, 42 (2002) 2123.

    Article  Google Scholar 

  12. A. S. Y. Shin, L. C. Simon, J. B. P. Soares and G. Scholz, Polymer, 44 (2003) 5317.

    Article  CAS  Google Scholar 

  13. J. G. Zhang and C. A. Wilkie, Polym. Degrad. Stab., 80 (2003) 163.

    Article  CAS  Google Scholar 

  14. M. Kato, A. Usuki and A. Okada, J. Appl. Polym. Sci., 66 (1997) 1781.

    Article  CAS  Google Scholar 

  15. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada, Macromolecules, 30 (1997) 6333.

    Article  CAS  Google Scholar 

  16. K. H. Wang, M. H. Choi, C. M. Koo, Y. S. Choi and I. J. Chung, Polymer, 42 (2001) 9819.

    Article  CAS  Google Scholar 

  17. C. M. Koo, H. T. Ham, S. O. Kim, K. H. Wang and I. J. Chung, Macromolecules, 35 (2002) 5116.

    Article  CAS  Google Scholar 

  18. K. H. Wang, I. J. Chung, M. O. Jang, J. K. Keum and H. H. Song, Macromolecules, 35 (2002) 5529.

    Article  CAS  Google Scholar 

  19. T. G. Gopakumar, J. A. Lee, M. Kontopoulou and J. S. Parent, Polymer, 43 (2002) 5483.

    Article  CAS  Google Scholar 

  20. W. B. Xu and P. S. He, J. Appl. Poly. Sci., 80 (2001) 304.

    Article  CAS  Google Scholar 

  21. P. Supaphol and J. E. Spruiell, Polymer, 41 (2000) 1205.

    Article  CAS  Google Scholar 

  22. Y. Seo, J. Kim, K. U. Kim and Y. C. Kim, Polymer, 41 (2000) 2639.

    Article  CAS  Google Scholar 

  23. W. B. Xu, M. L. Ge and P. S. He, J. Polym. Sci. Part B: Polym. Phys., 40 (2002) 408.

    Article  CAS  Google Scholar 

  24. L. Markus, Polym. Eng. Sci., 38 (1998) 610.

    Article  Google Scholar 

  25. K. Nakamura, T. Watanabe, K. Katayama and T. Amano, J. Appl. Polym. Sci., 16 (1972) 1077.

    Article  CAS  Google Scholar 

  26. A. Jeziorny, Polymer, 19 (1978) 1142.

    Article  CAS  Google Scholar 

  27. T. Ozawa, Polymer, 12 (1971) 150.

    Article  CAS  Google Scholar 

  28. W. B. Xu, H. B. Zhai and H. Y. Guo, European Polym. J., in press.

  29. M. J. Avrami, Chem. Phys., 9 (1941) 177.

    Article  CAS  Google Scholar 

  30. S. Srinivas, J. R. Babu, J. S. Riffle and G. L. Wilkes, Polym. Eng. Sci., 37 (1997) 497.

    Article  CAS  Google Scholar 

  31. T. X. Liu, Z. S. Mo, S. E. Wang and H. F. Zhang, Polym. Eng. Sci., 37 (1997) 568.

    Article  CAS  Google Scholar 

  32. Y. Ar, L. Li, Z. S. Mo and Z. L. Peng, J. Polym. Sci. Part B: Polym. Phys., 37 (1999) 443.

    Article  Google Scholar 

  33. H. E. Kissinger, J. Res. Nat. Bur. Stand. (US), 57 (1956) 217.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W.B., Zhai, H.B., Guo, H.Y. et al. PE/Org-MMT nanocomposites. Journal of Thermal Analysis and Calorimetry 78, 101–112 (2004). https://doi.org/10.1023/B:JTAN.0000042158.70250.39

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000042158.70250.39

Navigation