Skip to main content
Log in

Interaction of water with the regenerated cellulose membrane studied by DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One to three endothermal peaks atributted to melting of bulk and interfacial water were observed by DSC in the regenerated cellulose — water system. The profiles of thermal effects depend on water content, time of conditioning, film pretreatment and the conditions applied during the preceding freezing-thawing cycles. The occurrence might be deduced of melting-crystallisation processes. A large amount of non-freezable strongly bounded water was also detected.

Although cellulose absorbs water quickly after immersion, the structural changes consisting on ordering of polymer fraction occur during further conditioning due to increase in strength of water binding. Using the membranes in the separation module at 90°C causes weakening of these bonds. Differences between interaction of particular cellulose films with water can be detected during the first, the second and the third heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht/Boston/London 1991.

    Google Scholar 

  2. A. G. Chmielewski, G. Zakrzewska-Trznadel, N. Miljević and A. Van Hook, J. Membr. Sci., 55 (1991) 257.

    Article  CAS  Google Scholar 

  3. A. G. Chmielewski, G. Zakrzewska-Trznadel, N. Miljević and W. A. Van Hook, J. Membr. Sci., 60 (1991) 319.

    Article  CAS  Google Scholar 

  4. G. Zakrzewska-Trznadel, A. G. Chmielewski and N. Miljević, J. Membr. Sci., 113 (1996) 337.

    Article  CAS  Google Scholar 

  5. G. Zakrzewska-Trznadel and M. Harasimowicz, Desalination, 144 (2002) 207.

    Article  CAS  Google Scholar 

  6. G. Peschel and K. H. Aldfinger, J. Colloid Interface Sci., 34 (1970) 505.

    Article  CAS  Google Scholar 

  7. M. Pontie and D. Lemordant, J. Membr. Sci., 141 (1998) 13.

    Article  CAS  Google Scholar 

  8. H. Chanzy, S. Nawrot, A. Peguy and P. Smith, J. Polym. Sci., 20 (1982) 1909.

    CAS  Google Scholar 

  9. D. Golodnitzky, A. Ulus and J. S. Ishay, J. Therm. Anal. Cal., 73 (2003) 85.

    Article  Google Scholar 

  10. N. Nishioka, S. Yoshimi, T. Iwaguchi and K. Kosai, Polym. J., 16 (1984) 877.

    Article  CAS  Google Scholar 

  11. T. Hatakeyama, Y. Ikeda and H. Hatakeyama, Makromol. Chem., 188 (1987) 1875.

    Article  CAS  Google Scholar 

  12. R. Ravindra, K. R. Krovvidi, A. A. Khan and A. K. Rao, Polym., 40 (1999) 1159.

    Article  CAS  Google Scholar 

  13. R. Ravindra, S. Sridhar, A. A. Khan and A. K. Rao, Polym., 41 (2000) 279.

    Article  Google Scholar 

  14. Q. T. Nguyen, E. Favre, Z. H. Ping and J. Neel, J. Membr. Sci., 113 (1996) 137.

    Article  CAS  Google Scholar 

  15. B. C. Schultz, J. Therm. Anal. Cal., 51 (1998) 135.

    Google Scholar 

  16. L. A. Collet., J. Thermal Anal., 51 (1998) 693.

    Google Scholar 

  17. G. M. Mrevlishvili, A. P. S. Carvalho, M. A. V. Ribeiro da Silva, T. D. Mdzinarashvili, G. Z. Razmadze and T. Tarielashvili, J. Therm. Anal. Cal., 66 (2001) 133.

    Article  CAS  Google Scholar 

  18. S. Naoi, T. Hakateyama and H. Hakateyama, J. Therm. Anal. Cal., 70 (2002) 841.

    Article  CAS  Google Scholar 

  19. S. Lagerge, A. Kamyshny, S. Magdasi and S. Partka, J. Therm. Anal. Cal., 71 (2003) 291.

    Article  CAS  Google Scholar 

  20. A. Yaghmur, A. Aserin, I. Tiunova and N. Garti, J. Therm. Anal. Cal., 69 (2002) 163.

    Article  CAS  Google Scholar 

  21. M. Kimura, T. Hatakeyama and J. Nakano, J. Appl. Polym. Sci., 18 (1974) 3069.

    Article  CAS  Google Scholar 

  22. S. Swier, K. Van Durme and B. Van Mele, J. Polym. Phys. Polym. Phys., 41 (2003) 1824.

    CAS  Google Scholar 

  23. F. P. Cuperus, D. Bargeman and C. A. Smolders, J. Membr. Sci., 61 (1991) 73.

    Article  CAS  Google Scholar 

  24. A. Bottino, G. Gapanelli, P. Petit-Bon, N. Cao and M. Pegoraro, Sep. Sci. Technol., 26[10–11] (1991) 1315.

    CAS  Google Scholar 

  25. G. Capannelli, I. Becchi, A. Bottino, P. Moretti and S. Munari, Computer driven porosimeter for ultrafiltration membranes in: Characterisation of porous solids, K. K. Unger, J. Rouquerol, K. S. W. Sing and H. Kral (Eds), Elsevier, Amsterdam 1988 pp. 283–294.

    Google Scholar 

  26. S. Munari, A. Bottino, P. Moretti, G. Capannelli and I. Becchi, J. Membr. Sci., 41 (1989) 69.

    Article  CAS  Google Scholar 

  27. K Cieśla, E. Gwardys and T. Żółtowski, Starch/Starke, 43 (1991) 251.

    Google Scholar 

  28. P. de Meuter, J. Amelrijcks, H. Rahier and B. van Mele, J. Polym. Sci., 37 (1999) 2881.

    CAS  Google Scholar 

  29. P. de Meuter, H. Rahier and B. van Mele, Int. J. Pharm., 192 (1999) 77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyna Cieśla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cieśla, K., Rahier, H. & Zakrzewska-Trznadel, G. Interaction of water with the regenerated cellulose membrane studied by DSC. Journal of Thermal Analysis and Calorimetry 77, 279–293 (2004). https://doi.org/10.1023/B:JTAN.0000033213.31447.1d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000033213.31447.1d

Navigation