Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites


The thermal degradation and thermal stability of rice husk flour (RHF) filled polypropylene (PP) and high-density polyethylene (HDPE) composites in a nitrogen atmosphere were studied using thermogravimetric analysis. The thermal stability of pure PP and HDPE was found to be higher than that of wood flour (WF) and RHF. As the content of RHF increased, the thermal stability of the composites decreased and the ash content increased. The activation energy of the RHF filled PP composites increased slowly in the initial stage until α=0.3 (30% of thermal degradation region) and thereafter remained almost constant, whereas that of the RHF filled HDPE composites decreased at between 30 and 40 mass% of RHF content. The activation energy of the composites was found to depend on the dispersion and interfacial adhesion of RHF in the PP and HDPE matrix polymers.

This is a preview of subscription content, access via your institution.


  1. 1

    M. M. Thwe and K. Liao, Composite. Part A, 33 (2002) 43.

    Article  Google Scholar 

  2. 2

    S. C. Jana and A. Prieto, J. Appl. Polym. Sci., 86 (2002) 2159.

    CAS  Article  Google Scholar 

  3. 3

    H. J. Kim and Y. G. Eom, Mokchae Konghak, 29 (2001) 67.

    CAS  Google Scholar 

  4. 4

    B. D. Park, S. G. Wi, K. H. Lee, A. P. Singh, T. H. Yoon and Y. S. Kim, Biomass Bioenergy, 25 (2003) 319.

    CAS  Article  Google Scholar 

  5. 5

    H. G. Karian, Handbook of Polypropylene and Polypropylene Composites 1999, p. 1.

  6. 6

    J. M. Kenny, Six International Conference on Woodfiber-Plastic Composites 2001, p. 9.

  7. 7

    V. M. Kagathera and P. H. Parsania, Polymer. Test., 21 (2002) 181.

    Article  Google Scholar 

  8. 8

    K. G. Mansaray and A. E. Ghaly, Biomass and Bioenergy, 17 (1999) 19.

    CAS  Article  Google Scholar 

  9. 9

    J. Ceamanos, J. F. Mastral, A. Millera and M. E. Aldea, J. Anal. Appl. Pyrol., 65 (2002) 93.

    CAS  Article  Google Scholar 

  10. 10

    K. G. Mansaray and A. E. Ghaly, Bioresource Tech., 65 (1998) 13.

    CAS  Article  Google Scholar 

  11. 11

    B. Wu, Y. Z. Wang, X. L. Wang, X. L. Wang, K. K. Yang, Y. D. Jin and H. Zhao, Polym. Degrad. Stab., 76 (2002) 401.

    CAS  Google Scholar 

  12. 12

    J. Y. Lee, H. K. Lee, M. J. Shim and S. W. Kim, J. Ind. Eng. Chem., 6 (2000) 250.

    CAS  Google Scholar 

  13. 13

    N. Regnier and S. Fontaine, J. Therm. Anal. Cal., 64 (2001) 789.

    CAS  Article  Google Scholar 

  14. 14

    P. Ganan and I. Mondragon, J. Therm. Anal. Cal., 73 (2003) 783.

    CAS  Article  Google Scholar 

  15. 15

    L. Ballice, Fuel, 80 (2001) 1923.

    CAS  Article  Google Scholar 

  16. 16

    K. C. M. Nair, S. Thomas and G. Groeninckx, Comp. Sci. Tech., 61 (2001) 2519.

    Article  Google Scholar 

  17. 17

    S. George, K. T. Varughese and S. Thomas, Polymer, 41 (2000) 5485.

    CAS  Article  Google Scholar 

  18. 18

    X. Colom, F. Carrasco, P. Pages and J. Canavate, Comp. Sci. Tech., 63 (2003) 161.

    CAS  Article  Google Scholar 

  19. 19

    E. Inoue, M. Tsuchiya, K. Ishimaru and T. Kojima, J. Therm. Anal. Cal., 70 (2002) 747.

    CAS  Article  Google Scholar 

  20. 20

    J. Son, H. J. Kim and P. W. Lee, J. Appl. Polym. Sci., 82 (2001) 2709.

    CAS  Article  Google Scholar 

  21. 21

    J. Son and D. J. Gardner, Adhesion and Interface, 3 (2002) 1.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H.-J. Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, HS., Yang, HS., Kim, HJ. et al. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. Journal of Thermal Analysis and Calorimetry 76, 395–404 (2004).

Download citation

  • thermal decomposition
  • activation energy
  • thermal stability
  • thermogravimetric analysis
  • Flynn and Wall expression
  • rice husk flour