Skip to main content
Log in

Temperature-programmed oxidation of equilibrium fluid catalytic cracking catalysts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Characterization of coke on equilibrium, fluid catalytic cracking (FCC) catalysts contaminated with metals was investigated using temperature-programmed oxidation (TPO). TPO spectra of spent equilibrium catalysts from cracking of sour imported heavy gas oil (SIHGO) were deconvoluted into four peaks (Peak K, L, M and N). The four peaks were assigned to different types of coke on the catalyst. Peak L in the TPO spectrum was assigned to the 'contaminant' coke in the vicinity of metals. The amount of contaminant coke (Peak L) correlates with metal-contaminant concentration. The size of Peak L which is related to amount of contaminant coke decreased significantly for the spent highly contaminated catalyst pretreated with hydrogen and methane prior to cracking reactions as compared to the non-pretreated catalysts. Since both hydrogen and methane pretreatment can reduce oxidation state of the vanadium that present at high concentrations on the equilibrium catalysts the decrease in the amount of contaminant-coke represented by Peak L was explained by the reduction of the oxidation state of vanadium. Less contaminant coke was produced after the equilibrium catalysts were pretreated using hydrogen and methane gases since reduced vanadium has lower dehydrogenation activity compared to oxidized vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Cimbalo, R. L. Foster and S. J. Wachtel, Oil Gas J., 70 (1972) 112.

    CAS  Google Scholar 

  2. D. Wallenstein, R. H. Harding, J. R. D. Nee and L. T. Boock, Appl. Catal., 204 (2000) 89.

    Article  CAS  Google Scholar 

  3. M. Larsson, J. Jansson and S. Asplund, J. Catal., 178 (1998) 49.

    Article  CAS  Google Scholar 

  4. R. T. Baker and I. S. Metcalfe, Ind. Eng. Chem. Res., 34 (1995) 1558.

    Article  CAS  Google Scholar 

  5. E. S. Oh, Y. C. Park, I. C. Lee and H. K. Rhee, J. Catal., 172 (1997) 314.

    Article  CAS  Google Scholar 

  6. M. A. Goula, A. A. Lemonidou and A. M. Efstathiou, J. Catal., 161 (1996) 626.

    Article  CAS  Google Scholar 

  7. C. Li and T. C. Brown, Energy Fuels, 13 (1999) 888.

    Article  CAS  Google Scholar 

  8. O. Bayraktar and E. L. Kugler, Appl. Catal., 233 (2002) 197.

    Article  CAS  Google Scholar 

  9. O. Bayraktar and E. L. Kugler, J. Therm. Anal. Cal., 71 (2003) 767.

    Article  Google Scholar 

  10. Y. Yoshinura and E. Furimsky, Fuel, 65 (1986) 1388.

    Article  Google Scholar 

  11. P. Zeuthen and B. H. Cooper, Ind. Eng. Chem. Res., 134 (1995) 755.

    Article  Google Scholar 

  12. J. Bartholdy, P. Zeuthen and F. E. Massoth, Appl. Catal., 129 (1995) 33.

    Article  CAS  Google Scholar 

  13. C. L. Minh, R. A. Jones, I. E. Craven and T. C. Brown, Energy Fuels, 11 (1997) 463.

    Article  CAS  Google Scholar 

  14. P. K. Doolin, J. F. Hoffman and M. M. Mitchell Jr., Appl. Catal., 71 (1991) 233.

    Article  CAS  Google Scholar 

  15. V. D. Dimitriadis, A. A. Lappas and L. A. Vasalos, Fuel, 77 (1998) 1377.

    Article  CAS  Google Scholar 

  16. S. Vallová, V. Slovák and J. Leško, J. Therm. Anal. Cal., 71(3) (2003) 875.

    Article  Google Scholar 

  17. F. M. Lee, Ind. Eng. Chem. Res., 28 (1989) 920.

    Article  CAS  Google Scholar 

  18. G. M. Woltermann, G. Dodwell and B. Lerner, Presented at the National Petroleum Refiners Association Annual Meeting, San Antonia, TX, paper AM-96-46, 1996.

  19. V. Cadet, F. Raatz, J. Lynch and Ch. Marcilly, Appl. Catal., 68 (1991) 263.

    Article  CAS  Google Scholar 

  20. W. C. Cheng, M. V. Juskels and W. Suárez, Appl. Catal., 103 (1993) 87.

    Article  CAS  Google Scholar 

  21. L. T. Boock, T. F. Petti and J. A. Rudesill, ACS Symposium Series, 634 (1996) 171.

    Article  CAS  Google Scholar 

  22. L. T. Boock, T. F. Petti and J. A. Rudesill, ACS Div. Petr. Chem., 40 (1995) 421.

    CAS  Google Scholar 

  23. P. O'Connor, J. P. J. Verlaan and S. J. Yanik, Catalysis Today, 43 (1998) 305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bayraktar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayraktar, O., Kugler, E.L. Temperature-programmed oxidation of equilibrium fluid catalytic cracking catalysts. Journal of Thermal Analysis and Calorimetry 75, 989–998 (2004). https://doi.org/10.1023/B:JTAN.0000027192.43670.1b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000027192.43670.1b

Navigation