Skip to main content
Log in

DSC and thermal stability investigation of novel poly(ester-ether) glycols and poly(ester-ether)urethanes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new group of poly(ester-ether) glycols was obtained by polycondensation of adipic acid with poly(alkylene glycol) or of adipic acid with mixture of poly(alkylene glycol) and ethylene glycol. Poly(ester-ether) glycols were synthesised in a two-step method at comparable laboratory conditions. We prepared series of poly(ester-ether) glycols where molar ratios [COOH]:[OH] were changed in the range from 1:1.20 to 1:2.10. The molecular mass of synthesized substances was in the range from 850 to 2500 g mol-1. Thermal stability of poly(ester-ether) glycols and obtained polyurethanes was investigated by thermogravimetric analysis and DSC method. We have found that obtained oligomerols obtained from adipic acid and poly(tetramethylene glycol) have the highest thermal stability. The differential scanning calorimetry shown occurrence of two-phase transitions for examined polyurethanes, which are described by glass transition temperature T g and the melting temperature T t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Pielichowski, D. Słotwińska and J. Pielichowska, J. Therm. Anal. Cal., 63 (2001) 317.

    Article  CAS  Google Scholar 

  2. J. Ledru, B Youssef, J. Saiter and J. Grenet, J. Therm. Anal. Cal., 68 (2002) 767.

    Article  CAS  Google Scholar 

  3. J. Datta and A. Balas, Investigations of synthesis, structure and properties of the oligo(alkylene-ester-ether)diols, Word Polymer Congress, IUPAC MACRO 2000, 38th Macromolecular IUPAC Symposium, Warszawa, 9-14. VI. 2000, V1, p. 134.

    Google Scholar 

  4. R. F. Harris, C. D. Deprter and R. B. Potler, Macromolecules, 24 (1991) 2973.

    Article  CAS  Google Scholar 

  5. J. H. Flynn and Z. Petrovic, J. Thermal. Anal., 41 (1994) 549.

    CAS  Google Scholar 

  6. C. G. Mothe and C. R. de Araujo, Thermochim. Acta, 357-358 (2000) 321.

    Article  CAS  Google Scholar 

  7. T. L. Wang and T.-H. Hsieh, Polymer Degradation and Stability, 55 (1997) 95.

    Article  CAS  Google Scholar 

  8. M. Herrera, G. Matuschek and A. Kettrup, Polymer Degradation and Stability, 78 (2002) 323.

    Article  CAS  Google Scholar 

  9. M. G. Markovic, N. R. Choudhury, J. G. Matisons and D. R. G. Williams, J. Therm. Anal. Cal., 59 (2000) 409.

    Article  Google Scholar 

  10. M. Ginic-Markovic, N. R. Choudhury, J. G. Matisons and N. Dutta, J. Therm. Anal. Cal., 65 (2001) 943.

    Article  CAS  Google Scholar 

  11. R. C. S. Araujo and V. M. D. Pasa, J. Therm. Anal. Cal., 67 (2002) 313.

    Article  CAS  Google Scholar 

  12. C. G. Mothe, R. C. S. Araujo, M. A. de. Oliveira and M. I. Yoshida, J. Therm. Anal. Cal., 67 (2002) 305.

    Article  CAS  Google Scholar 

  13. J. Datta and A. Balas, Patent, P 339395, (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, J., Balas, A. DSC and thermal stability investigation of novel poly(ester-ether) glycols and poly(ester-ether)urethanes. Journal of Thermal Analysis and Calorimetry 74, 615–621 (2003). https://doi.org/10.1023/B:JTAN.0000005202.46487.ca

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000005202.46487.ca

Navigation