Skip to main content
Log in

New Approach for the Organisation and the Shaping of Organo-Bridged Silicas: An Overview

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new and general route to synthesize shape-controlled bridged silsesquioxanes has been developed by the hydrolysis-condensation of molecularly designed precursors bearing urea groups. The auto-association of the bridging organic units, owing to the hydrogen bonds developing between the urea groups, has been exploited to create new multifunctional organo-bridged silicas with peculiar shapes from the nano- to the micro-scale. Helical fibers with controlled handedness, hollow tubes and spheres, and lamellar plates have been produced according to the main organic substructure and also depending on the reaction conditions (catalyst, solvent and temperature). Spectroscopic techniques (solid state 13C and 29Si NMR, FTIR and X-ray diffraction) and electronic microscopic measurements (SEM and TEM) allowed the characterisation of these hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Shea, D.A. Loy, and O.W. Webster, Chem. Mater. 1, 512 (1989); K.J. Shea, D.A. Loy, and O.W. Webster, J. Amer. Chem. Soc. 114, 6700 (1992); K.J. Shea and D.A. Loy, Chem. Rev. 95, 1431 (1995).

    Google Scholar 

  2. R.J.P. Corriu, J.J.E. Moreau, P. Th´epot, and M. Wong Chi Man, Chem. Mater. 4, 1217 (1992); R.J.P. Corriu and D. Leclerc, Angew. Chem., Int. Ed. Engl. 35, 1420 (1996); J.J.E. Moreau and M. Wong Chi Man, Coord. Rev. 178-180, 1073 (1998); R.J.P. Corriu, Angew. Chem., Int. Ed. Engl. 39, 1376 (2000).

    Google Scholar 

  3. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, 1990).

  4. C. Sanchez and F. Ribot, New J. Chem. 18, 1007 (1994); P. Judeinstein and C. Sanchez, J. Mater. Chem. 6, 511 (1996).

    Google Scholar 

  5. U. Schubert, New J. Chem. 18, 1049 (1994); U. Schubert, N. H¨using, and A. Lorenz, Chem. Mater. 7, 2012 (1995).

    Google Scholar 

  6. D. Avnir, Acc. Chem. Res. 28, 328 (1995).

    Google Scholar 

  7. C. Sanchez, G.J. de A.A. Soler-Illia, F. Ribot, C.R. Mayer, and V. Cabuil, Chem. Mater. 13, 3061 (2001); G.J. de A.A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chem. Rev. 102, 4093 (2002).

    Google Scholar 

  8. A. Adima, J.J.E. Moreau, and M. Wong Chi Man, J. Mater. Chem. 7, 2331 (1997); A. Adima, J.J.E. Moreau, and M. Wong Chi Man, Chirality 12, 411 (2000); P. Hesemann and J.J.E. Moreau, Tetrahedron: Asymmetry 11, 2183 (2000).

    Google Scholar 

  9. H.W. Oviatt, K.J. Shea, S. Kalluri, Y. Shi, W.H. Steier, and L.R. Dalton, Chem. Mater. 7, 493 (1995).

    Google Scholar 

  10. J.-C. Broudic, O. Conocar, J.J.E. Moreau, D. Meyer, and M. Wong Chi Man, J. Mater. Chem. 9, 2283 (1999); S. Bourg, J.-C. Broudic, O. Conocar, J.J.E. Moreau, D. Meyer, and M. Wong Chi Man, Mater. Res. Soc. Symp. Proc. 628, CC1.6.1 (2000); S. Bourg, J.-C. Broudic, O. Conocar, J.J.E. Moreau, D. Meyer, and M. Wong Chi Man, Chem. Mater. 13, 491 (2001).

    Google Scholar 

  11. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartulli, and J.S. Beck, Nature 359, 710 (1992); J.S. Beck, J.C. Vartulli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834(1992).

    Google Scholar 

  12. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc. 121, 9611 (1999); S. Guan, S. Inagaki, T. Ohsuna, and O. Terasaki, Nature 416, 304 (2002).

    Google Scholar 

  13. Asefa, M.J. MacLachlan, N. Coombs, and G.A. Ozin, Nature 402, 867 (1999); M.J. MacLachlan, T. Asefa, and G.A. Ozin, Chem. Eur. J. 2507 (2000).

    Google Scholar 

  14. B.J. Melde, B.T. Holland, C.F. Blanford, and A Stein, Chem. Mater 11, 3302 (1999).

    Google Scholar 

  15. Y. Lu, H. Fan, N. Doke, D.A. Loy, R.A. Assink, D.A. LaVan, and C.J. Brinker, J. Am. Chem. Soc 122, 5258 (2000).

    Google Scholar 

  16. A. Sayari, S. Hamoudi, Y. Yang, I.L. Moudrakovski, and J.R. Ripmeester, 12, 3857 (2000).

    Google Scholar 

  17. H. Zhu, D.J. Jones, J. Zarzac, J. Rozière, and R. Dutartre, Chem. Commun. 2568 (2001).

  18. V. Goletto, A.-C. Bled, G. Trimmel, M. Wong Chi Man, H.-G. Woo, D. Durand, and F. Babonneau, Mater. Res. Soc. Symp. Proc. 726, Q.6.14.1 (2002).

    Google Scholar 

  19. B. Boury and R.J.P. Corriu, Chemistry Organic Silicon Compounds 3, 565 (2001).

    Google Scholar 

  20. J.J.E. Moreau, L. Vellutini, M. Wong Chi Man, and C. Bied, J. Amer. Chem. Soc. 123, 1509 (2001).

    Google Scholar 

  21. J.J.E. Moreau, L. Vellutini, M. Wong Chi Man, and C. Bied, Chem. Eur. J. 9, 1594 (2003).

    Google Scholar 

  22. J.J.E. Moreau, L. Vellutini, M. Wong Chi Man, C. Bied, J.-L. Bantignies, P. Dieudonn´e, and J.-L. Sauvajol, J. Amer. Chem. Soc. 123, 7957 (2001).

    Google Scholar 

  23. J. van Esch, F. Schoonbeek, M. de Loos, H. Kooijman, A.L. Spek, R.M. Kellogg, and B.L. Feringa, Chem. Eur. J. 5, 937 (1999).

    Google Scholar 

  24. C. Bied, J.J.E. Moreau, L. Vellutini, and M. Wong Chi Man, J. Sol-Gel Sci. Technol. 26, 538 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreau, J.J., Vellutini, L., Bied, C. et al. New Approach for the Organisation and the Shaping of Organo-Bridged Silicas: An Overview. Journal of Sol-Gel Science and Technology 31, 151–156 (2004). https://doi.org/10.1023/B:JSST.0000047977.44966.53

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000047977.44966.53

Navigation