Skip to main content
Log in

Organofunctional Metal Oxide Clusters as Building Blocks for Inorganic-Organic Hybrid Materials

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The controlled hydrolysis of metal alkoxides in the presence of methacrylic acid results in metal oxide clusters capped by polymerizable methacrylate ligands. Radical polymerization of small portions of such clusters with organic co-monomers allows the preparation of an interesting new type of inorganic-organic hybrid polymers in which the metal oxo clusters efficiently crosslink the organic polymers chains. SAXS investigations revealed that the clusters may aggregate to form clusters of clusters. The properties of the hybrid materials, such as thermal stability, swelling, dielectric and mechanical properties, depend not only on the portion of incorporated cluster, i.e. the crosslinking density, but also on the kind of employed cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Review: P.G. Harrison, J. Organometal. Chem. 542, 141 (1997).

    Google Scholar 

  2. D.C. Bradley, R.C. Mehrotra, I.P. Rothwell, and A. Singh, Alkoxo and Aryloxo Derivatives of Metals (Academic Press, San Diego, 2001).

    Google Scholar 

  3. Selected examples: J.J. Schwab and J.D. Lichtenhan, Appl. Organomet. Chem. 12, 707 (1998); P.T. Mather, H.G. Jeon, A. Romo-Uribe, T.S. Haddad, and J.D. Lichtenhan, Macro-molecules 32, 1194 (1999); J. Pyun and K. Matyjaszewski, Macromolecules 33, 217 (2000); A. Sellinger and R.M. Laine, Chem. Mater. 8, 1592 (1996).

    Google Scholar 

  4. Reviews: F. Ribot and C. Sanchez, Comments Inorg. Chem. 20, 327 (1999); G. Kickelbick and U. Schubert, Monatsh. Chem. 132,13(2001); U. Schubert, Chem. Mater. 13, 3487 (2001).

    Google Scholar 

  5. I. Gautier-Luneau, A. Mosset, and J. Galy, Z. Kristallogr. 180, 83 (1987); S. Doeuff, Y. Dromzee, F. Taulelle, and C. Sanchez, Inorg. Chem. 28, 4439 (1989).

    Google Scholar 

  6. G. Kickelbick, M.P. Feth, H. Bertagnolli, M. Puchberger, D. Holzinger, and S. Gross, J. Chem. Soc. Dalton 3892 (2002).

  7. G. Guerrero, M. Mehring, P.H. Mutin, F. Dahan, and A. Vioux, J. Chem. Soc. Dalton 1537 (1999); M. Mehring, M. Schurmann, P.H. Mutin, and A. Vioux, Z. Kristallogr. 215, 591 (2000); M. Mehring, G. Guerro, F. Dahan, P. Mutin, and A. Vioux, Inorg. Chem.39, 3325 (2000); P.H. Mutin, M. Mehring, G. Guerrero, and A. Vioux, Mat. Res. Soc. Symp. Ser. 628, CC2.4.1 (2001).

  8. U. Schubert, E. Arpac, W. Glaubitt, A. Helmerich, and C. Chau, Chem. Mater. 4, 291 (1992).

    Google Scholar 

  9. B. Moraru, N. H¨using, G. Kickelbick, U. Schubert, P. Fratzl, and H. Peterlik, Chem. Mater. 14, 2732 (2002).

    Google Scholar 

  10. G. Kickelbick and U. Schubert, Eur. J. Inorg. Chem. 159 (1998).

  11. G. Kickelbick and U. Schubert, Chem. Ber. 130, 473 (1997).

    Google Scholar 

  12. G. Kickelbick, P. Wiede, and U. Schubert, Inorg. Chim. Acta 284, 1 (1999)

    Google Scholar 

  13. G. Trimmel, S. Gross, G. Kickelbick, and U. Schubert, Appl. Organomet. Chem. 15, 401 (2001).

    Google Scholar 

  14. B. Moraru, S. Gross, G. Kickelbick, G. Trimmel, and U. Schubert, Monatsh. Chem. 132, 993 (2001).

    Google Scholar 

  15. S. Gross, G. Kickelbick, M. Puchberger, and U. Schubert, Monatsh. Chem. 134, 1053 (2003).

    Google Scholar 

  16. L.G. Hubert-Pfalzgraf, V. Abada, S. Halut, and J. Roziere, Poly-hedron 16, 581 (1997); N. Stenou, C. Bonhomme, C. Sanchez, J. Vaissermann, and L.G. Hubert-Pfalzgraf, Inorg. Chem. 37, 901 (1998).

    Google Scholar 

  17. S. Gross, V. DiNoto, G. Kickelbick, and U. Schubert, Mat. Res. Soc. Symp. Proc. 726, 47 (2002).

    Google Scholar 

  18. B. Moraru, G. Kickelbick, and U. Schubert, Eur. J. Inorg. Chem. 1295 (2001).

  19. M. Jupa, G. Kickelbick, and U. Schubert, Eur. J. Inorg. Chem. 1835 (2004).

  20. F.R. Kogler, M. Jupa, M. Puchberger, and U. Schubert, J. Mater Chem (2004), in press.

  21. G. Trimmel, P. Fratzl, and U. Schubert, Chem. Mater. 12, 602 (2000).

    Google Scholar 

  22. U. Schubert, G. Trimmel, B. Moraru, W. Tesch, P. Fratzl, S. Gross, G. Kickelbick, and N. H¨using, Mat. Res. Soc. Symp. Proc. 628, CC2.3.1 (2001).

    Google Scholar 

  23. V. Torma, N. H¨using, H. Peterlik, and U. Schubert, C.R. Chimie, 7, 495 (2004).

    Google Scholar 

  24. F. Kogler, S. Gross, G. Kickelbick, and U. Schubert, unpublished.

  25. G. Kickelbick, D. Holzinger, C. Brick, G. Trimmel, and E. Moons, Chem. Mater. 14, 4382 (2002).

    Google Scholar 

  26. Y. Gao, N.R. Choudhury, J. Matisons, U. Schubert, and B. Moraru, Chem. Mater. 14, 4522 (2002).

    Google Scholar 

  27. U. Schubert and T. V¨olkel, N. Moszner, Chem. Mater. 13, 3811 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, U. Organofunctional Metal Oxide Clusters as Building Blocks for Inorganic-Organic Hybrid Materials. Journal of Sol-Gel Science and Technology 31, 19–24 (2004). https://doi.org/10.1023/B:JSST.0000047954.70820.dd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000047954.70820.dd

Navigation