Skip to main content
Log in

Structural Stability of Azurin Encapsulated in Sol-Gel Glasses: A Fluorometric Study

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study we investigated the structural features of azurin, a blue copper-containing enzyme, upon encapsulation in tetramethoxysilane derived sol-gel glasses. Fluorescence spectroscopy revealed that gelation of inorganic networks does not affect the protein tertiary structure and only after two months solvent phase loss altered protein stability. In case of organically modified sol-gel matrices, the protein stability was reduced after encapsulation into hosts modified by adding 3-Mercaptopropyl-trimethoxysilane, 3-Glycidyloxypropyl-trimethoxysilane and Trimethoxy octylsilane, while it was found to be enhanced in networks doped with 3-Trimethoxysilyl-propyl methacrylate and 3-Aminopropyl-trimethoxysilane. In order to better investigate the effects of silica glasses on azurin stability, unfolding experiments of the protein, in solution or entrapped, were also performed in the presence of both methanol and guanidinium hydrochloride (GdHCl). Our results suggest that the matrix protects azurin against the aggregation induced by alcohol, and that the free energy change value upon unfolding by GdHCl was lower than the value calculated for azurin in solution and was dependent on the surface chemistry of silica matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Némethy, W.J. Peer, and H.A. Scheraga, Annu. Rev. Biophys. Bioeng. 10, 459 (1981).

    Google Scholar 

  2. P.H. Von Hippel and K.Y. Wong, J. Biol. Chem. 240, 3909 (1965).

    Google Scholar 

  3. J.L. Finney, B.J. Gellatly, I.C. Golton, and J. Goodfellow, Biophys. J. 32, 17 (1980).

    Google Scholar 

  4. A. Cupane, D. Giacomazza, and L. Cordone, Biopolymers 21, 1081 (1982).

    Google Scholar 

  5. A.P. Minton, J. Biol. Chem. 276, 10577 (2001) and references therein.

    Google Scholar 

  6. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  7. J.D. Brennan, J. Fluoresc. 9, 295 (1999) and references therein.

    Google Scholar 

  8. L.M. Ellerby, C.R. Nishida, F. Nishida, S. Yamanaka, B. Dunn, J.S. Valentine, and J.I. Zink, Science 255, 1113 (1992).

    Google Scholar 

  9. I. Savini, R. Santucci, A. Di Venere, N. Rosato, G. Strukul, F. Pinna, and L. Avigliano, Appl. Biochem. Biotechnol. 82, 227 (1999).

    Article  Google Scholar 

  10. M.L. Ferrer, F. Del Monte, C.R. Mateo, J. Gomez, and D. Levy, J. Sol-Gel Sci. and Techn. 26, 1169 (2003).

    Google Scholar 

  11. J.M. Miller, B. Dunn, J.S. Valentine, and J.I. Zink, J. Non-Cryst. Solids 202, 279 (1996).

    Article  Google Scholar 

  12. A.K. Williams and J.T. Hupp, J. Am. Chem. Soc. 120, 4366 (1998).

    Article  Google Scholar 

  13. Q. Ji, C.R. Lloyd, W.R. Ellis, and E.M. Eyring, J. Am. Chem. Soc. 120, 221 (1998).

    Google Scholar 

  14. T.K. Das, I. Khan, D.L. Rousseau, and J.M. Friedman, J. Am. Chem. Soc. 120, 10268 (1998).

    Article  Google Scholar 

  15. D.M. Liu and I.W. Chen, Acta Mater. 47, 4535 (1999).

    Google Scholar 

  16. B.C. Dave, J.M. Miller, B. Dunn, J.S. Valentine, and J.I. Zink, J. Sol-Gel Sci. and Techn. 8, 629 (1997).

    Google Scholar 

  17. D.K. Eggers and J.S. Valentine, Protein Sci. 10, 250 (2001).

    Google Scholar 

  18. D.K. Eggers and J.S. Valentine, J. Mol. Biol. 314, 911 (2001).

    Google Scholar 

  19. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1983).

    Google Scholar 

  20. G. Mei, A. Di Venere, F.M. Campeggi, G. Gilardi, N. Rosato, F. De Matteis, and A. Finazzi-Agró, Eur. J. Biochem. 265, 619 (1999).

    Google Scholar 

  21. G. Mei, G. Gilardi, M. Venanzi, N. Rosato, G.W. Canters, and A. Finazzi-Agró, Protein Sci. 5, 2248 (1996).

    Google Scholar 

  22. G. Gilardi, G. Mei, N. Rosato, G.W. Canters, and A. Finazzi-Agró, Biochemistry 33, 1425 (1994).

    Google Scholar 

  23. K.K. Turoverov, I.M. Kuznetsova, and V.N. Zaitsev, Biophys. Chem. 23, 79 (1985).

    Article  Google Scholar 

  24. S.J. Kroes, G.W. Canters, G. Gilardi, A. van Hoek, and A.J. Visser, Biophys J. 75, 2441 (1998).

    Google Scholar 

  25. P. Guptasarma, Biophys. Chem. 65, 221 (1997).

    Google Scholar 

  26. L. Ren, K. Tsuru, S. Hayakawa, and A. Osaka, J. Sol-Gel Sci. and Techn. 21, 115 (2001).

    Google Scholar 

  27. J. Hotz and W. Meier, Adv. Mater. 10, 1387 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottini, M., Di Venere, A., Tautz, L. et al. Structural Stability of Azurin Encapsulated in Sol-Gel Glasses: A Fluorometric Study. Journal of Sol-Gel Science and Technology 30, 205–214 (2004). https://doi.org/10.1023/B:JSST.0000039527.88843.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000039527.88843.18

Navigation