Skip to main content
Log in

Mixed Cationic-Nonionic Surfactants Route to MCM-48: Effect of the Nonionic Surfactant on the Structural Properties

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Structurally ordered MCM-48 silicas were facilely synthesized using the mixtures of cetyltrimethylammonium bromide (CTAB) and p-Octyl polyethylene glycol phenyl ether (OP-10) as co-templates with low molar ratio of CTAB to silica (0.139:1) and low concentration of mixed surfactants (ca. 5%) and within a wide range of OP-10/CTAB ratio (0.08–0.25). For comparison purpose, the cubic material was also prepared with only CTAB as the structure-directing agent under the same preparation conditions. The products obtained by different templating method were thoroughly characterized by XRD, N2 sorption, TEM, TG-DSC and 29Si MAS NMR. Measurement results from these techniques indicated that the introduction of nonionic OP-10 had significant effect on the structural properties of MCM-48 and the mixed surfactants' route allowed an efficient synthesis and a more condensed product compared to the only cationic CTAB templating protocol. Finally, our preliminary explanation for that why cubic MCM-48 materials could be obtained in this system and structural properties were sensitive to the OP-10/CTAB ratios was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Nature 359, 710 (1992).

    Article  Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, S.B. Mccullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).

    Google Scholar 

  3. Q. Huo, D.I. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schuth, and G.D. Stucky, Nature 368, 317 (1994).

    Google Scholar 

  4. P.T. Tanev and T.J. Pinnavaia, Science 267, 865 (1995).

    Google Scholar 

  5. A. Comra, Chem. Rev. 97, 2373 (1997).

    Google Scholar 

  6. R. Kohn and M. Froba, Catal. Today 68, 227 (2001).

    Google Scholar 

  7. F. Chen, F. Song, and Q. Li, Microporous Mesoporous Mater. 29, 305 (1999).

    Google Scholar 

  8. R. Ryoo, S.H. Joo, and J.M. Kim, J. Phys. Chem. B 103, 7435 (1999).

    Google Scholar 

  9. M. Kruk, M. Jaroniec, R. Ryoo, and S.H. Joo, Chem. Mater. 12, 1414 (2000).

    Article  Google Scholar 

  10. X.W. Yan, H.Y. Chen, and Q.Z. Li, Acta Chim. Sin. 56, 1214 (1998).

    Google Scholar 

  11. W. Zhao, J. Yao, X. Huang, and Q. Li, Chin. Sci. Bull. 46, 1436 (2001).

    Google Scholar 

  12. S.R. Zhai, Y. Zhang, D. Wu, and Y.H. Sun, Acta Chim. Sin. 3, 345 (2003).

    Google Scholar 

  13. J.B. Pang, J.E. Hampsey, Q.Y. Hu, Z.W.Wu, V.T. John, and Y.F. Lu, J. Chem. Soc., Chem. Commun., p. 682 (2004).

  14. A. Monnier, F. Schuh, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B.F Chmelka, Science 261, 1299 (1993).

    Google Scholar 

  15. J.M. Kim, S.K. Kim, and R. Ryoo, J. Chem. Soc., Chem. Commun., p. 259 (1998).

  16. A. Sayari, J. Am. Chem. Soc. 122, 6504 (2000).

    Google Scholar 

  17. Y. Xia and R. Mokaya, J. Mater. Chem. 13, 657 (2003).

    Google Scholar 

  18. Y. Xia and R. Mokaya, J. Phys. Chem. B 107, 6954 (2003).

    Google Scholar 

  19. Y. Liu, A. Karkamkar, and T.J. Pinnavaia, J. Chem. Soc., Chem. Commun., p. 1822 (2001).

  20. P.I. Ravikovitch and A.V. Neimark, Langmuir 16, 2419 (2000).

    Google Scholar 

  21. K. Schumacher, P.I. Ravikovitch, A. Du Chesne, A.V. Neimark, and K.K. Unger, Langmuir 16, 4648 (2000).

    Google Scholar 

  22. Z. Yuan, Q. Luo, J. Liu, T. Chen, J. Wang, and H. Lin, Microporous Mesopororous Mater. 42, 289 (2001).

    Google Scholar 

  23. A.A. Romero, M.D. Alba, and J. Klinowski, J. Phys. Chem. B 102, 123 (1998).

    Google Scholar 

  24. L. Sierra, B. Lopez, H. Gil, and J.L. Guth, Adv. Mater. 11, 307 (1999).

    Google Scholar 

  25. G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, New York, 1987).

    Google Scholar 

  26. J. Xu, Z. Luan, H. He, W. Zhou, and L. Kevan, Chem. Mater. 10, 3690 (1998).

    Google Scholar 

  27. H. Kosslick, H. Landmesser, R. Fricker, and W. Storek, Stud. Surf. Sci. Catal. 129, 243 (2000).

    Google Scholar 

  28. Q. Huo, D. Margolese, and G.D. Stucky, Chem. Mater. 16, 1176 (1994).

    Google Scholar 

  29. R.S. Zhai, M. Pu, Y. Zhang, D. Wu, and Y. Sun, Chin. J. Inorg. Chem. 18, 1081 (2002).

    Google Scholar 

  30. X. Mo and S. Liu, Chin. Chem. Bull. 8, 483 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, SR., Zheng, JL., Zou, J. et al. Mixed Cationic-Nonionic Surfactants Route to MCM-48: Effect of the Nonionic Surfactant on the Structural Properties. Journal of Sol-Gel Science and Technology 30, 149–155 (2004). https://doi.org/10.1023/B:JSST.0000039499.77472.4b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000039499.77472.4b

Navigation