Skip to main content
Log in

Sol-Gel Synthesis of Transparent Alumina Gel and Pure Gamma Alumina by Urea Hydrolysis of Aluminum Nitrate

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

γ-Alumina was synthesized by a sol-gel method with the aluminum ion hydrolysis control performed by urea. The initial saturated Al3+/urea solution presented urea coordinated with the aluminum ion, as shown in the 13C NMR and 27Al NMR spectra and longitudinal relaxation times, T 1, from the latter. The substitution of water molecules in the Al3+ coordination shell by urea controlled the hydrolysis process and provided an extensive nucleation during the initial steps of the aluminum hydroxide formation due to urea thermolysis at 90°C. The resulting sol, composed of Al(OH)3 nanoparticles, coalesced and became a transparent gel permeated by a solution of urea and the polycation ion [Al13O4(OH)24(H2O)12]7+. The freshly prepared gel was transformed, under heating at 300°C, directly to γ-alumina, characterized by FTIR, 27Al-MAS-NMR and SBET techniques, without δ- or θ-phases, as a consequence of the high degree of homogeneity of the γ-alumina precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Venkatesh and S.R. Ramanan, Materials Letters 55, 189 (2002).

    Google Scholar 

  2. S.D. Mo, Y.N. Xu, and W.Y. Ching, Journal of the American Ceramic Society 80, 1193 (1997).

    Google Scholar 

  3. S. Bhaduri, E. Zhou, and S.B. Bhaduri, Nanostructure Materials 7, 487 (1996).

    Google Scholar 

  4. P.J. Skrdla and R.T. Robertson, Journal of Molecular Catalysis A: Chemical 194, 255 (2003).

    Google Scholar 

  5. J. Sanchez-Valente, X. Bokhimi, and F. Hernandez, Langmuir 19, 3583 (2003).

    Google Scholar 

  6. J. Temuujin, T. Jadambaa, K.J.D. Mackenzie, P. Angerer, F. Porte, and F. Riley, Bulletin of Materials Science 23, 301 (2000).

    Google Scholar 

  7. H. Schaper and L.L. Vanreijen, Thermochimica Acta 77, 383 (1984).

    Google Scholar 

  8. I. Levin and D. Brandon, Journal of the American Ceramic Society 81, 1995 (1998).

    Google Scholar 

  9. S. Kureti and W. Weisweiler, Applied Catalysis, A: General 225, 251 (2002).

    Google Scholar 

  10. K.Wefers and C. Misra, Technical Paper No. 19 Alcoa Research Laboratories Center (Pittsburgh, PA 15069, USA, 1987).

  11. H.C. Stumpf, A.S. Russel, J.W. Newsome, and C.M. Tucker, Industrial and Engineerging Chemistry 42, 1398 (1950).

    Google Scholar 

  12. B.C. Lippens and J.H. DeBoer, Acta Crystallographica 17, 1312 (1964).

    Google Scholar 

  13. K.J. Morrissey, K.K. Czanderna, C.B. Carter, and R.P. Merrill, Journal of the American Ceramic Society 67, C–88 (1984).

    Google Scholar 

  14. S.J. Wilson and J.D.C. McConnell, Journal of Solid State Chemistry 34, 315 (1980).

    Google Scholar 

  15. Y.H. Chiou, M.T. Tsai, and H.C. Shih, Journal of Materials Science 29, 2378 (1994).

    Google Scholar 

  16. I. Levin, L.A. Bendersky, D.G. Brandon, and M. Ruhle, Acta Materialia 45, 3659 (1997).

    Google Scholar 

  17. I. Levin, W.D. Kaplan, D.G. Brandon, H. Mullejans, and M. Ruhle, Materials Science Forum 207, 749 (1996).

    Google Scholar 

  18. C.J. Brinker and G.W. Scherrer, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic Press, San Diego, 1990), Chap. 1 and 2.

    Google Scholar 

  19. Y. Berkovich, A. Aserin, E. Wachtel, and N. Garti, Journal of Colloid and Interface Science 245, 58 (2002).

    Google Scholar 

  20. S. Kureti and W. Weisweiler, Applied Catalysis, A: General 225, 251 (2002).

    Google Scholar 

  21. J.K. Pradhan, P.K. Gochhayat, I.N. Bhattacharya, S.C. Das, and R.K. Panda, Journal of ChemicalTechnology and Biotechnology 78, 577 (2003).

    Google Scholar 

  22. F. Dumeignil, K. Sato, M. Imamura, N. Matsubayashi, E. Payen, and H. Shimada, Applied Catalysis, A: General 241, 319 (2003).

    Google Scholar 

  23. I. Le Bihan, F. Dumeignil, E. Payen, and J. Grimblot, Journal of Sol-Gel Science and Technology 24, 113 (2002).

    Google Scholar 

  24. K. Kamiya, N. Hioki, T. Hashimoto, and H. Nasu, Journal of Sol-Gel Science and Technology 20, 275 (2001).

    Article  Google Scholar 

  25. N. Yao, G.X. Xiong, Y.H. Zhang, M.Y. He, and W.S. Yang, Catalysis Today 68, 97 (2001).

    Google Scholar 

  26. M.M. Haridas and J.R. Bellare, Ceramics International 25, 613 (1999).

    Google Scholar 

  27. A. Pierre, R. Begag, and G. Pajonk, Journal of Materials Science 34, 4937 (1999).

    Google Scholar 

  28. M.D. Sacks, T.Y. Tseng, and Y.S. Lee, American Ceramic Society Bulletin 63, 301 (1984).

    Google Scholar 

  29. J.L. Shi, J.H. Gao, and Z.X. Lin, Solid State Ionics 32-33, 537 (1988).

    Google Scholar 

  30. H. Nagai, S. Hokazono, and A. Kato, British Ceramic Transactions and Journal. 90, 44 (1991).

    Google Scholar 

  31. D. Shaw, Fourier Transformation NMR Spectroscopy (Elsevier Scientific Publishing Company, Oxford, 1976), p. 128.

    Google Scholar 

  32. H. Marsmann, NMR Basic Principles and Progress (Springer Verlag, New York, 1981), p. 23.

    Google Scholar 

  33. M.I.F. Macêdo, Sintese de alumina por processo sol gel: cinética e morfologia. PhD thesis, Chemistry Institute, UNICAMP, Campinas-SP, Brazil, 1999.

    Google Scholar 

  34. G.P. Thim, C.A. Bertran, V.E. Barlette, M.I.F. Macêdo, and M.A.S. Oliveira, Journal of the European Ceramic Society 21, 759 (2001).

    Google Scholar 

  35. G.C. Levy, L.L. Robert, and L.N. Gordon, Carbon-13 Nuclear Magnetic Resonance Spectroscopy (JohnWiley and Sons, New York, 1980), p. 155.

    Google Scholar 

  36. G. Johansson, Acta Chemica Scandinavica 14, 771 (1960).

    Google Scholar 

  37. J.W. Akitt, W.N. Greenwood, and S.D. Lester, Journal of the Chemical Society A-Inorganic Physical Theoretical 5, 803 (1969).

    Google Scholar 

  38. G. Busca, V. Lorenzelli, G. Ramis, and R.J. Willey, Langmuir 9, 1492 (1993).

    Google Scholar 

  39. V.M. Mastiklin, O.P. Krivoruchko, B.P. Zolotovskii, and R.A. Buyanov, Reaction Kinetics and Catalysis Letters 18, 117 (1981).

    Google Scholar 

  40. M.I. Baraton and P. Quintard, Journal of Molecular Structure 79, 337 (1982).

    Google Scholar 

  41. J. Sanz, I. Sobrados, A.L. Cavalieri, P. Pena, S. Aza, and J.S. Moya, Journal of the American Ceramic Society 74, 2398 (1991).

    Google Scholar 

  42. C. Morterra and G. Magnacca, Catalysis Today 27, 497 (1996).

    Article  Google Scholar 

  43. R. Nass and H. Schmidt, Journal of Non-Crystalline Solids 121, 329 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macêdo, M.I.F., Osawa, C.C. & Bertran, C.A. Sol-Gel Synthesis of Transparent Alumina Gel and Pure Gamma Alumina by Urea Hydrolysis of Aluminum Nitrate. Journal of Sol-Gel Science and Technology 30, 135–140 (2004). https://doi.org/10.1023/B:JSST.0000039497.46154.8f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000039497.46154.8f

Navigation