Skip to main content
Log in

Preparation of TiO2 Powder by Modified Two-Stage Hydrolysis

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nano-sized TiO2 powders were synthesized by modified hydrolysis reaction using two-stage treatments of acid/base catalyst. Using an acidic catalyst, the primary particle size of assynthesized TiO2 was smaller than using basic catalyst, but rutile ratio and the particle size were increased after heat treatment due to the dense packing of particles. However, in the synthesized TiO2 powder using a basic catalyst persist the anatase phase and a loosely aggregation of particle after heat treatment. It was found that the catalyst used in the first stage determines the primary particle size. However the phase, the packing density and degree of dispersion of TiO2 powder were determined by the secondly applied catalyst. Therefore, the addition sequence of catalysts is the most important key to prepare fine powders for photocatalytic use and solar cell. In this study, an acid treatment followed by a base is suggested as best route to obtaining fine size and distribution of particles and high content of anatase phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Roman and N.C. Martinez, Catalysis Today 40, 353 (1998).

    Google Scholar 

  2. D.S. Muggli, J.T. McCue, and J.L. Falconer, J. Catal. 173, 470 (1998).

    Google Scholar 

  3. U. Stafford, K.A. Gray, and P.V. Kamat, J. Catal. 167, 25 (1997).

    Google Scholar 

  4. R. Wang, K. Hashimoto, A. Fujishima, M. Cjikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature 388, 431 (1997).

    Google Scholar 

  5. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mat. 10(2), 135 (1998).

    Google Scholar 

  6. J. Yu and X. Zhao, Mater. Res. Bull. 36, 97 (2001).

    Google Scholar 

  7. L. Tinucci, E. Borfarello, C. Minero, and E. Pelizzetti, Photocatalytic Purification and Treatment of Water and Air, 585 (1993).

  8. V. Brezova, A. Stasko, M. Ceppan, M. Mikula, J. Blecha, M. Vesely, A. Blazkova, J. Panak, and L. Lapcik, Photocatalytic Purification and Treatment of Water and Air, 659 (1993).

  9. H. Kawaguchi, Photocatalytic Purification and Treatment of Water and Air. 665 (1993).

  10. J.C. D'Olivira, G. Al-Sayyed, and P. Pichat, Environ. Sci. Technol. 24, 990 (1990).

    Google Scholar 

  11. M.R. Prairle, L.R. Evans, B.M. Stange, and S.L. Marinez, Environ. Sci. Technol. 27, 1776 (1993).

    Google Scholar 

  12. A. Sclafani, L. Palmisano, and M. Schiavello, J. Phys. Chem. 94, 829 (1990).

    Google Scholar 

  13. K.E. Karakitsou and X.E. Verykios, J. Phys. Chem. 97, 1184 (1993).

    Google Scholar 

  14. H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M.A. Fox, and M. Anpo, J. Catalysis 158, 97 (1996).

    Google Scholar 

  15. B. O'Regan and M. Gratzel, Nature 353, 737 (1991).

    Google Scholar 

  16. A. Hagfeldt and M. Gratzel, Acc. Chem. Res. 33, 269 (2000).

    Google Scholar 

  17. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993).

    Google Scholar 

  18. S. Vernury, S.E. Pratsinis, and L. Kibbey, J. Mater. Res. 12, 1031 (1997).

    Google Scholar 

  19. K.C. Song and S.E. Pratsinis, J. Am. Ceram. Soc. 84, 92 (2001).

    Google Scholar 

  20. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, J. Am. Ceram. Soc. 80, 3157 (1997).

    Google Scholar 

  21. D. Bersani, G. Antonioli, P.P. Lottici, and T. Lopez, J. Non-Cryst. Solids 232–234, 175 (1998).

    Google Scholar 

  22. S. Yamabi and H. Imai, Chem. Mater. 14, 609 (2002).

    Google Scholar 

  23. Y. Djaoued, S. Badilescu, P.V. Ashrit, D. Bersani, P.P. Lottici, and J. Robichaud, J. Sol-Gel. Sci. Technol. 24, 255 (2002).

    Google Scholar 

  24. Y. Djaoued, R. Taj, R. Bruning, S. Badilescu, P.V. Ashrit, G. Bader, and T. Vo-Van, J. Non-Cryst. Solids 297, 55 (2002).

    Google Scholar 

  25. D.C. Hague and M.J. Mayo, J. Am. Ceram. Soc. 77, 1957 (1994).

    Google Scholar 

  26. H.J. Yoon, P.S. Ha, H.S. Jung, K.S. Hong, Y.H. Park, and K.H. Ko, J. Colloid Interface Sci. 211, 321 (1999).

    Google Scholar 

  27. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Chap. 10.

  28. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, J. Am. Ceram. Soc. 80(12), 3157 (1997).

    Google Scholar 

  29. A. Sclafani, L. Palmisano, and E. Davi, J. Photochem. Photobio. A: Chem. 56, 113 (1991).

    Google Scholar 

  30. H. Yoneyama, T. Torimoto, N. Iwata, and H. Kanemoto, Electrochem. Soc. Meeting Abstract, No. 580 (1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.C., Jung, Y.J., Park, P.Y. et al. Preparation of TiO2 Powder by Modified Two-Stage Hydrolysis. Journal of Sol-Gel Science and Technology 30, 21–28 (2004). https://doi.org/10.1023/B:JSST.0000028175.45673.8b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000028175.45673.8b

Navigation