Skip to main content
Log in

Influence of Surfactant and Humidity on Sol-Gel Macroporous Organosilicate Coatings

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the preparation of macroporous hydrophobic organosilicate films using methyltriethoxysilane (MTES) as precursor, the effects of surfactant addition, surfactant properties and atmospheric humidity were explored. As films dried, preferential evaporation of the ethanol resulted in an increase of the relative water content. This led to development of phase separation between the hydrophobic gel and the aqueous liquid and ultimately the formation of macropores. In the presence of surfactant, surfactant adsorption at the aqueous phase/gel interface affected the extent of phase separation therefore the resulting pores. Span 20 surfactant (HLB = 8.6) has lower compatibility with the aqueous phase than Tween 20 (HLB = 16.7) and effectively increases the hydrophobicity of the gel phase leading to the formation of larger pores. An increase in Span 20 content from 2 wt.% to 5 wt.% also increased pore size. Film porosity also increased significantly with humidity inside the coating chamber. It would appear that the increased porosity is a result of increased phase separation caused by reduced water evaporation at the higher humidity. Highly macroporous (up to ∼80% porosity), reproducible and uniform films were obtained by incorporating Span 20 surfactant into the coating solutions and performing dip coating at ∼80% relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Vendange and P. Colomban, J. Mat. Res. 11, 518 (1996).

    Google Scholar 

  2. S. Kumon, K. Nakanishi, and K. Hirao, J. Sol-Gel Sci. Technol. 19, 553 (2000).

    Google Scholar 

  3. A. Imhof and D.J. Pine, Advanced Materials 10, 697 (1998).

    Google Scholar 

  4. K. Kato, A. Tsuzuki, Y. Torii, H. Taoda, T. Kato, and Y. Butsugan, J. Mat. Sci. 30, 837 (1995).

    Google Scholar 

  5. A.N. Khramov and M.M. Collinson, Chem. Commu. 8, 767 (2001).

    Google Scholar 

  6. K. Nakanishi and N. Soga, J. Am. Ceram. Soc. 74, 2518 (1991).

    Google Scholar 

  7. K. Nakanishi and N. Soga, J. Non-Cryst. Solids 139, 1 (1992).

    Google Scholar 

  8. K. Kajihara, K. Nakanishi, K. Tanaka, K. Hirao, and N. Soga, J. Am. Ceram. Soc. 81, 2670 (1998).

    Google Scholar 

  9. H.L. McCollister and R.B. Pettit, J. Sol. Ener. Eng. 105, 425 (1983).

    Google Scholar 

  10. K. Nakanishi, S. Kumon, K. Hirao, and H. Jinnai, Mat. Res. Soc. Symp. Proc. 628, CC7.6.1 (2000).

    Google Scholar 

  11. K. Nakanishi, H. Komura, R. Takahashi, and N. Soga, Bull. Chem. Soc. Jpn. 67, 1327 (1994).

    Google Scholar 

  12. K. Nakanishi and N. Soga, Bull. Chem. Soc. Jpn. 70, 587 (1997).

    Google Scholar 

  13. Y.C. Tai, M. Lee, and Y. Wu, Chem. Eng. Sci. 56, 2389 (2001).

    Google Scholar 

  14. M. Chatterjee, M.K. Naskar, B. Siladitya, and D. Ganguli, J. Mat. Res. 15, 176 (2000).

    Google Scholar 

  15. V.C. Della, S. Dire, and E. Pagani, J. Non-Cryst. Solids 209, 51 (1997).

    Google Scholar 

  16. M.J. Han and D. Bhattacharyya, J. Mem. Sci. 98, 191 (1995).

    Google Scholar 

  17. T. Kawai, Y.M. Lee, and S. Yamada, Polymer 38, 1631 (1997).

    Google Scholar 

  18. H.C. Park, Y.P. Kim, H.Y. Kim, and Y.S. Kang, J. Mem. Sci. 156, 169 (1999).

    Google Scholar 

  19. W.L. Huang, S.H. Cui, K.M. Liang, Z.F. Yuan, and S.R. Gu, J. Phys. Chem. Solids 63, 645 (2002).

    Google Scholar 

  20. B. Janczuk, W. Wojcik, and A. Zdziennicka, J. Coll. Inter. Sci. 157, 384 (1993).

    Google Scholar 

  21. D.L. Lord, K.F. Hayes, A.H. Demond, and A. Salehzadeh, Envi. Sci. Technol. 31, 2045 (1997).

    Google Scholar 

  22. K. Tsujii, Surface Activity: Principle, Phenomena and Applications (Academic Press, San Diego, 1998), Ch. 2.

    Google Scholar 

  23. J. Santhanalakshmi and S. Balaji, J. Coll. Inter. Sci. 179, 517 (1996).

    Google Scholar 

  24. J. Israelacchvili, Intermolecular and Surface (Academic Press, London, 1991).

    Google Scholar 

  25. J. P. Chang, Journal of Chromatography A 317, 157 (1984).

    Google Scholar 

  26. H. Nagel, A. Metz, and R. Hezel, Sol. Ener. Mat. Sol. Cells 65, 71 (2001).

    Google Scholar 

  27. I.J. Chung and S.K. Mah, J. Non-Cryst. Solids 183, 252 (1995).

    Google Scholar 

  28. Z. Zhang, Y. Tanigami, R. Terai, H. Wakabayashi, and S. Sakka, J. Phys. Chem. B 101, 1328 (1997).

    Google Scholar 

  29. K.T. Jung, Y.H. Chu, S. Haam, and Y.G. Shul, J. Non-Cryst. Solids 298, 193 (2002).

    Google Scholar 

  30. P. Menut, C.P. Bohatier, A. Deratani, C. Dupuy, and S. Guilbert, Desalination 145, 11 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongcharee, K., Brungs, M., Chaplin, R. et al. Influence of Surfactant and Humidity on Sol-Gel Macroporous Organosilicate Coatings. Journal of Sol-Gel Science and Technology 29, 115–124 (2004). https://doi.org/10.1023/B:JSST.0000023012.39842.c0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000023012.39842.c0

Navigation