Skip to main content
Log in

Gamma radiolysis and solar photolysis of bilirubin: Similarities and differences

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Biliverdin is a useful component in various aspects of biochemistry and biosynthesis, but its synthetic preparation is often long-winded. Micro-production (and subsequent isolation) by solar photolysis and gamma radiolysis of bilirubin provides rapid in vitro generation. Both methods are competitive, and this article discusses their merits and limitations for application in biosynthetic research. The investigation assumed a comparative study to evaluate the relative potential of the photolytic and radiolytic phenomena in this respect. The calculated rate of incident energy in the case of solar photolysis was roughly30.4.10-2 W, and about 5.70.10-4 W during gamma-irradiation (from a 137Cs source). In both cases the bilirubin (40 µM) degradation was pronounced in the initial few minutes of exposure, producing respective depletion rates of approximately 6.8 µM/min and 2.4 µM/min. Overall, both applications showed declining bilirubin concentrations close to 90%, after about 30 minutes. However, the corresponding production of biliverdin was higher by about 50% in the photolytic application. To account for heat-up effects in the photolytic application, thermal effects were studied up to 65 °C, and it was found that, as a result of this, a reduction in bilirubin concentration of about 40% was encountered. The species of interest were monitored spectrophotometrically, and the composite results showed that regulated production of biliverdin is possible under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ritter, Chem. Eng. News, 80 (2002) 9.

    Google Scholar 

  2. S. Onishi, K. Isobe, S. Itoh, N. Kawade, S. Sugiyam, Biochem. J., 190 (1980) 533.

    CAS  Google Scholar 

  3. M. Roth, Clinical Biochemistry: Principles and Methods, Vol. H, Part II, H. Ch. Curtius, M. Roth (Eds), Walter de Gruyter, New York 1974, p. 1372.

    Google Scholar 

  4. L. P. Palilis, A. C. Calokerinos, N. Grekas, Anal. Chim. Acta, 333 (1996) 267.

    Article  CAS  Google Scholar 

  5. D. Nogales, D. A. Lightner, J. Biochem., 270 (1995) 73.

    CAS  Google Scholar 

  6. J. H. Epstein, in: The Science of Photobiology, K. C. Smith (Ed.), 2nd ed., Plenum Press, New York, 1989, p. 155.

    Google Scholar 

  7. F. M. Salih, A. Al-Hamdi, A. E. Pillay, J. Trace Microprobe Techn., 19 (2000) 409.

    Article  Google Scholar 

  8. H. J. Vreman, D. K. Stevenson, Am. J. Dis. Child., 144 (1990) 590.

    CAS  Google Scholar 

  9. H. Ihara, H. Nakamura, Y. Aoki, T. Aoki, M. Yoshida, Clin. Chem., 38 (1992) 2124.

    CAS  Google Scholar 

  10. E. Knobloch, F. Mandys, R. Hodr, P. Hujer, R. Mader, J. Chromatogr., 566 (1991) 89.

    CAS  Google Scholar 

  11. A. E. Pillay, F. M. Salih, A. Al-Hamdi, J. Trace Microprobe Techn., 20 (2002) 601.

    Article  CAS  Google Scholar 

  12. F. M. Salih, Photodermatol. Photoimmunol. Photomed., 17 (2001) 272.

    Article  CAS  Google Scholar 

  13. T. Hikichi, J. Akiba, N. Ueno, A. Yoshida, B. Chakrabarti, Japan J. Opthalmol., 41 (1977) 154.

    Article  Google Scholar 

  14. A. E. Pillay, F. M. Salih, Anal. Bioanal. Chem., 375 (2003) 751.

    CAS  Google Scholar 

  15. J. W. T. Spinks, R. J. Woods, An Introduction to Radiation Chemistry, 3rd ed., John Wiley, New York 1990, p. 408.

    Google Scholar 

  16. R. Chase, L. Rabinowitz, Radioisotope Methodology, Butterworth Scientific Publications, Philadelphia, 1960, p. 325.

    Google Scholar 

  17. L. I. Grossweiner, K. C. Smith, in: The Science of Photobiology, K. C. Smith (Ed.), 2nd ed., Plenum Press, New York, 1989, p. 47.

    Google Scholar 

  18. C. A. Goresky, J. Chromatogr., 528 (1990) 123.

    CAS  Google Scholar 

  19. J. J. Lauff, M. E. Kasper, R. T. Ambrose, J. Chromatogr., 226 (1981) 391.

    CAS  Google Scholar 

  20. S. Onishi, N. Kawade, S. Itoh, K. Isobe, S. Sugiyama, Biochem. J., 190 (1980) 527.

    CAS  Google Scholar 

  21. T. W. Wu, Clin. Chem., 17 (1984) 221.

    CAS  Google Scholar 

  22. A. E. Pillay, F. M. Salih, A. Al-Hamdi, S. Al-Kindy, J. Trace Microprobe Techn., 21 (2003) 295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillay, A.E., Salih, F.M. Gamma radiolysis and solar photolysis of bilirubin: Similarities and differences. Journal of Radioanalytical and Nuclear Chemistry 261, 211–214 (2004). https://doi.org/10.1023/B:JRNC.0000030959.94570.d5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JRNC.0000030959.94570.d5

Keywords

Navigation