Skip to main content
Log in

Sequential distillation of fission-produced radioiodine and radioruthenium from sulfuric acid solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Fission-produced 131I and 103Ru radionuclides have been separated sequentially by distillation from H2SO4 of controlled chemical composition. The thermal-neutron irradiated uranium trioxide targets were digested in 2M NaOH solution and then, the supernatant solution was acidified to 20% H2SO4 with addition of a few drops of H2O2 solution. On boiling for 3.5 hours, ≥99.99%131I was volatilized, passed through 3M H2SO4 traps, and then collected in 0.1M NaOH + 0.01% Na2S2O3 solution with a recovery yield of 73.6%. The product radionuclide had high radiochemical and radionuclidic purities. After separation of 131I, the fission-product solution was acidified to 40% H2SO4 acid containing KMnO4 as an oxidant and boiled for 40 minutes. Ruthenium nuclides were volatilized and collected in 0.1M NaOH solution. Gamma-ray spectrometry showed that the separation and the recovery yields of 103Ru were ≥99.99 and 65%, respectively, with ~92% radionuclidic purity, measured immediately after separation. The radionuclides of 132I and 106Rh were the main contaminants detected in the obtained 103Ru product solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Asghar, R. Sajjad, N. Illyas, IAEA-TECDOC-1228, India, 18–22 January, 1999.

  2. Radioisotope Production and Quality Control, Technical Reports Series No. 128, International Atomic Energy Agency, Vienna, 1971.

  3. Nuclear Data Evaluation Laboratory, Korea Atomic Energy Research, 2000–2002.

  4. S. Soenarjo, A. H. Gunawan, B. Purwadi, K. Wisnukaton, A. Sukmana, Sriyono, Atom Indonesia, 25 (1999).

  5. T. R. England, B. F. Rider, Thermal Neutron Induced Fission, Los Alamos National Laboratory, USA, LA-UR-94-3106; ENDF-349, 1993.

    Google Scholar 

  6. An. N. Nesmeyanov, Radiochemisrty, English Translation, 1st ed., Mir Publishers, Moscow, 1974.

    Google Scholar 

  7. E. Henrich, E. Schlich, USA Patent, No. 4,432,955, 21 February, 1984.

  8. G. F. Vandegrift, J. L. Snelgrove, S. Aase, M. M. Bretscher, B. A. Buchhulz, L. Chen, C. Conner, D. Dong, G. L. Hofman, G. C. Knighton, R. A. Leonard, J. Sedlet, D. E. Walker, T. Wiencek, E. L. Wood, D. G. Wygmans, A. Travelli, S. Landsberger, D. Wu, A. Suripto, A. Mutalib, H. Nasution, H. G. Adang, L. Hotman, S. Amini, S. Dedi, R. Martalena, A. Gogo, B. Purwadi, D. L. Amin, Zahiruddin, A. Sukmana, Kadarisman, Sriyono, D. Hafid, M. Sayad, IAEA-TECDOC, August (1997).

  9. R. K. Itawi, Radiochim. Acta, 60 (1993) 133.

    CAS  Google Scholar 

  10. Nuclear Medicine Research Council (NMRC), Medical Isotope Applications, Richland, Washington, 1998.

  11. R. Gandon, D. Boust, O. Bedue, Radiochim. Acta, 61 (1993) 41.

    CAS  Google Scholar 

  12. R. Motoki, M. Izumo, K. Onoma, S. Motoishi, A. Iguchi, T. Sato, T. Ito, IAEA-TECDOC-337, 1985.

  13. L. E. Glendenin, R. P. Metcalf, T. B. Norey, C. D. Coryell, NNES IV-9, Radiochemical Studies, the Fission Products, 3 (1957) 1629.

    Google Scholar 

  14. S. M. Stoller, R. B. Richards, Reactor Handbook; Vol. II, Fuel Reprocessing, 2nd ed., Interscience Publishers Inc., New York, 1961.

    Google Scholar 

  15. K. Mutojima, U.S.A. Patent, No. 4,938,895, 3 July 1990.

  16. J. Foos, M. Lemaire, A. Guy, M. Draye, R. Chomel, A. Deloge, P. Doutreluingne, U.S.A. Patent No. 5,417,942, 23 May 1995.

  17. B. H. Lee, J. G. Bang, J. Korean Association Radiat. Prot., 8 (1983) 15.

    CAS  Google Scholar 

  18. T. Sato, Radiochim. Acta, 46 (1989) 213.

    CAS  Google Scholar 

  19. H. Etherington, Nuclear Engineering Handbook, 1st ed., McGraw-Hill, New York, 1958.

    Google Scholar 

  20. D. L. Foster, J. E. Savolainen, R. G. Wymer, Proc. Intern. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 9 (1955) 546.

    Google Scholar 

  21. T. W. Burrows, Nuclear Data in the MIRD Format, Brookhaven National Laboratory, U. S. A., Report BNL-NCS-512-142, February, 1988.

    Google Scholar 

  22. S. Y. F. Chu, L. P. EkstrÖm, R. B. Firestone, The Lund/LBNL Data Search, Version 2.0, Lund University, Sweden, February, 1999.

    Google Scholar 

  23. I. Vogel, A Textbook of Quantitative Inorganic Analysis, 3rd ed., Longmans, Toronto, 1961.

    Google Scholar 

  24. P. K. Agasyan, Qualitative Semimicroanalysis, English translation, 2nd ed., Mir Publishers, Moscow, 1980.

    Google Scholar 

  25. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry; A Comprehensive Text, 3rd ed., Wiley Eastern Limited, New Delhi, 1979.

    Google Scholar 

  26. R. M. Baldwin, J. Appl. Radiation Isotopes, 37 (1986) 817.

    Article  CAS  Google Scholar 

  27. Liverpool University, Radiation Protection Office, Generic Local Rules for Work with Unsealed Radioactive Sources, England, April 2001.

  28. D. R. Lide, CRC Handbook of Chemistry and Physics, 73rd ed., CRC Press Inc., Boca Raton, 1992–1993.

    Google Scholar 

  29. G. R. Choppin, J. Rydberg, Nuclear Chemistry; Theory and Applications, 1st ed., Pergamon Press, London, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Absy, M.A., Aly, H.F., Mousa, M.A. et al. Sequential distillation of fission-produced radioiodine and radioruthenium from sulfuric acid solutions. Journal of Radioanalytical and Nuclear Chemistry 261, 163–172 (2004). https://doi.org/10.1023/B:JRNC.0000030951.39488.64

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JRNC.0000030951.39488.64

Keywords

Navigation