Skip to main content
Log in

Isotope effect of potassium in an aqueous/amalgam system

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The isotope fractionation of potassium in an aqueous (KOH)/amalgam system has been studied. Two types of isotope effects with opposite isotope enrichment directions were observed in the electrolysis of potassium from the aqueous into the amalgam phase under constant electrolytic potentials. It was found that the first isotope effect causing the light isotope enriched in the amalgam is related to the kinetic process of the mass transfer through the aqueous/amalgam interface, while the second one leading to the enrichment of the heavy isotope in the amalgam phase is produced by the isotope-exchange equilibrium. The temperature dependence of the equilibrium isotope effect was also investigated using single-stage and multi-stage techniques. It was observed that the equilibrium isotope effect increases as the temperature increases in the range of 293-371 K. An empirical equation was used to fit the variations of the isotope effects with temperature for potassium together with the other alkaline and alkaline earth metals studied in the same system. The origin of the equilibrium isotope fractionation in the electron-exchange system was discussed. Furthermore, the mass dependence of the separation coefficients of the alkaline and alkaline earth metals observed in aqueous/amalgam and ion-exchange systems were compared. At 293 K the equilibrium isotope separation coefficient for the 39K/41K isotopes in the amalgam system was determined as (5.6±0.6).10-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Chang, M. Hosoe, M. Nomura, Y. Fujii, J. Chem. Soc. Faraday Trans., 91 (1996) 2319.

    Google Scholar 

  2. Z. Chang, M. Nomura, K. Motomiya, Y. Fujii, J. Chem. Soc. Faraday Trans., 92 (1996) 4485.

    Google Scholar 

  3. D. Chen, Z. Chang, M. Nomura, Y. Fujii, J. Chem. Soc. Faraday Trans., 93 (1997) 2395.

    Google Scholar 

  4. A. A. Palko, J. S. Drury, G. M. Begun, J. Chem. Phys., 64 (1976) 1828.

    Google Scholar 

  5. D. Hutchison. J. Chem. Phys., 14 (1946) 401.

    Google Scholar 

  6. H. H. Garretson, J. S. Drury, J. Chem. Phys., 34 (1961) 1957.

    Google Scholar 

  7. K. Okuyama, I. Okada, N. Saito, J. Inorg. Nucl. Chem., 35 (1972) 2883.

    Google Scholar 

  8. M. Fujie, Y. Fujii, M. Nomura, M. Okamoto, J. Nucl. Sci. Technol., 23 (1986) 330.

    Google Scholar 

  9. J. Bigeleisen, J. Am. Chem. Soc., 118 (1996) 3676.

    Google Scholar 

  10. Y. Fujii, M. Nomura, Y Ban, J. Nucl. Sci. Technol., 39 (2002) 413.

    Google Scholar 

  11. E. Michiels, P. D. Bievre, Intern. J. Mass Spectrom. Ion Phys., 49 (1983) 265.

    Google Scholar 

  12. A. J. Bard, L. R. Faulkner, Electrochemistry Methods, John Wiley & Sons, New York, 1980, p. 119.

    Google Scholar 

  13. H. C. Urey, J. Chem. Soc., 15 (1947) 562

    Google Scholar 

  14. J. Bigeleisen, M. G. Mayer, J. Chem. Phys., 15 (1947) 261

    Google Scholar 

  15. L. I. Kleinman, M. Wolfsberg, J. Chem. Phys., 59 (1973) 2043.

    Google Scholar 

  16. T. Ishida, J. Bigelesen, J. Chem. Phys., 64 (1976) 4775.

    Google Scholar 

  17. G. Jancso, L. P. N. Rebelo, W. A. Van Hook, Chem. Rev., 93 (1993) 2645.

    Google Scholar 

  18. Y. Fujii, M. Nomura, M. Okamoto, H. Onitsuka, F. Kawakami, K. Takeda, Z. Naturforsch., 44a (1989) 395.

    Google Scholar 

  19. Y. Fujii, M. Nomura, M. Okamoto, H. Onitsuka, T. Nakanishi, Bulletin Research Laboratory for Nuclear Reactors, Special Issue No. 1, Y. Fujii, T. Ishida and K. Takeuchi (Eds), ISSN 0387-6144, Tokyo, 1992, p. 214.

  20. M. Nomura, N. Higuchi, Y. Fujii, J. Am. Chem. Soc., 118 (1996) 9127.

    Google Scholar 

  21. D. Zuker, J. S. Drury, J. Chem. Phys., 34 (1964) 1957.

    Google Scholar 

  22. T. Oi, K. Kawada, M. Hosoe, H. Kakihana, Separ. Sci. Technol., 26 (1991) 1353.

    Google Scholar 

  23. K. Kawada, T. Oi, M. Hosoe, H. Kakihana, J. Chromatogr. 538 (1991) 355.

    Google Scholar 

  24. M. Hosoe, T. Oi, K. Kawada, H. Kakihana, J. Chromatogr., 438 (1988) 225.

    Google Scholar 

  25. T. Oi, S. Yanase, H. Kakihana, Separ. Sci. Technol., 22 (1987) 2203.

    Google Scholar 

  26. T. Oi, N. Morika, H. Ogino, H. Kakihana, M. Hosoe, Separ. Sci. Technol., 28 (1993) 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Z., Nomura, M. & Fujii, Y. Isotope effect of potassium in an aqueous/amalgam system. Journal of Radioanalytical and Nuclear Chemistry 258, 511–518 (2003). https://doi.org/10.1023/B:JRNC.0000011744.78574.3a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JRNC.0000011744.78574.3a

Keywords

Navigation