Journal of Youth and Adolescence

, Volume 33, Issue 5, pp 431–442 | Cite as

Assessing Covariates of Adolescent Delinquency Trajectories: A Latent Growth Mixture Modeling Approach

  • Margit Wiesner
  • Michael Windle


Using data from a community sample of 1218 boys and girls (mean age at the first wave was 15.5 years), this longitudinal study examined several covariates—adjustment problems, poor academic achievement, negative life events, and unsupportive family environments—of distinctive trajectories of juvenile delinquency. Latent growth mixture modeling analysis revealed 6 trajectory groups: rare offenders, moderate late peakers, high late peakers, decreasers, moderate-level chronics, and high-level chronics. Several factors discriminated between more normative groups and high-level chronic offenders, including poor academic achievement, unsupportive family environments, life events, and substance use, whereas almost no differences were found between groups with more serious offending trajectories. Overall, there was more specificity in correlates of distinctive offending trajectories than expected by general theories of crime (e.g., Gottfredson, M. R., and Hirschi, T., 1990, A General Theory of Crime. Stanford University Press, Stanford, CA).

delinquency adolescence trajectories longitudinal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angold, A., Erkanli, A., Costello, E. J., and Rutter,M. (1996). Precision, reliability and accuracy in the dating of symptom onsets in child and adolescent psychopathology. J. Child Psychol. Psychiatry Allied Discipl. 37: 657–664.Google Scholar
  2. Armor, D. J., and Polich, J. M. (1982). Measurement of alcohol consumption. In Pattison, E. M., and Kaufman, E. (eds.), Encyclopedic Handbook of Alcoholism. Gardner Press, New York, pp. 72–81.Google Scholar
  3. Aseltine, R. H., Jr., Gore, S., and Gordon, J. (2000). Life stress, anger and anxiety, and delinquency: An empirical test of general strain theory. J. Health Soc. Behav. 41: 256–275.PubMedGoogle Scholar
  4. Ayers, C. D., Williams, J. H., Hawkins, J. D., Peterson, P. L., Catalano, R. F., and Abbott, R. D. (1999). Assessing correlates of onset, escalation, de-escalation, and desistance of delinquent behavior. J. Quant. Criminol. 15: 277–306.CrossRefGoogle Scholar
  5. Bandeen-Roche, K., Huang, G.-H., Munoz, B., and Rubin, G. S. (1999). Determination of risk factor associations with questionnaire outcomes: A methods case study. Am. J. Epidemiol. 150: 1165–1178.PubMedGoogle Scholar
  6. Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. J. Am. Stat. Assoc. 92: 1375–1386.Google Scholar
  7. Capaldi, D. M. (1992). Co-occurrence of conduct problems and depressive symptoms in early adolescent boys: II. A 2-year follow-up at grade 8. Dev. Psychopathol. 4: 125–144.Google Scholar
  8. Caspi, A., and Bem, D. J. (1990). Personality continuity and change across the life course. In Pervin, L. (ed.), Handbook of Personality Theory and Research. Guilford Press, New York, pp. 549–575.Google Scholar
  9. Catalano, R. F., and Hawkins, J. D. (1996). The Social Development Model: A theory of antisocial behavior. In Hawkins, J. D. (ed.), Delinquency and Crime: Current Theories. Cambridge University Press, New York, pp. 149–197.Google Scholar
  10. Chung, I.-J., Hill, K. G., Hawkins, J. D., Gilchrist, L. D., and Nagin, D. S. (2002). Childhood predictors of offense trajectories. J. Res. Crime Delinquency 39: 60–90.Google Scholar
  11. DeMaris, A. (1995). A tutorial in logistic regression. J. Marriage Fam. 57: 956–968.Google Scholar
  12. Dishion, T. J., French, D. C., and Patterson, G. R. (1995). The development and ecology of antisocial behavior. In Cicchetti, D., and Cohen, D. J. (eds.), Developmental Psychopathology (Vol. 2) Wiley, New York, pp. 421–471.Google Scholar
  13. Dornbusch, S. M., Mon-Reynaud, R., Ritter, P. L., Chen, Z., and Steinberg, L. (1991). Stressful events and their correlates among adolescents of diverse backgrounds. In Colten, M. E., and Gore, S. (eds.), Adolescent Stress: Causes and Consequences. Aldine, New York, pp. 111–130.Google Scholar
  14. Elliott, D. S., Huizinga, D., and Menard, S. (1989). Multiple Problem Youth: Delinquency, Substance Use, and Mental Health Problems. Springer, New York.Google Scholar
  15. Farrington, D. P. (1995). The challenge of teenage antisocial behavior. In Rutter, M. (ed.), Psychosocial Disturbances in Young People: Challenges for Prevention. Cambridge University Press, Cambridge, UK, pp. 83–130.Google Scholar
  16. Farrington, D. P. (1997). Human development and criminal careers. In Maguire, M., Morgon, R., and Reiner, R. (eds.), The Oxford Handbook of Criminology. Clarendon Press, Oxford, pp. 361–408.Google Scholar
  17. Farrington, D. P., and Hawkins, J. D. (1991). Predicting participation, early onset, and later persistence in officially recorded offending. Crim. Behav. Mental Health 1: 1–33.Google Scholar
  18. Fergusson, D. M., Horwood, L. J., and Nagin, D. S. (2000). Offending trajectories in a New Zealand birth cohort. Criminology 38: 525–551.Google Scholar
  19. Garrison, C. Z., Addy, C., Jackson, K. L., McKeown, R., and Waller, J. L. (1991). The CES-D as a screen for depression and other psychiatric disorders in adolescents. J. Am. Acad. Child Adolesc. Psychiatry 30: 636–641.PubMedGoogle Scholar
  20. Garrison, C. Z., Schluchter,M. D., Schoenbach, V. J., and Kaplan, B. H. (1989). Epidemiology of depressive symptoms in young adolescents. J. Am. Acad. Child Adolesc. Psychiatry 28: 343–351.PubMedGoogle Scholar
  21. Gottfredson, M. R., and Hirschi, T. (1990). A General Theory of Crime. Stanford University Press, Stanford, CA.Google Scholar
  22. Graham, J. W., and Hofer, S. M. (2000). Multiple imputation in multivariate research. In Little, T. D., Schnabel, K. U., and Baumert, J. (eds.), Modeling Longitudinal and Multilevel Data. Erlbaum, Mahwah, NJ, pp. 201–218.Google Scholar
  23. Henry, D. B., Tolan, P. H., and Gorman-Smith, D. (2001). Longitudinal family and peer group effects on violence and nonviolent delinquency. J. Clin. Child Psychol. 30: 172–186.CrossRefPubMedGoogle Scholar
  24. Horwitz, A. V., and White, H. R. (1987). Gender role orientations and styles of pathology among adolescents. J. Health Soc. Behav. 28: 158–170.PubMedGoogle Scholar
  25. Huizinga, D., and Elliott, D. S. (1986). Reassessing the reliability and validity of self-report delinquency measures. J. Quant. Crimonol. 2: 293–327.Google Scholar
  26. Kass, R. E., and Raftery, A. E. (1995). Bayes Factor. J. Am. Stat. Assoc. 90: 773–795.Google Scholar
  27. Little, R. J. A., and Rubin, D. B. (1987). Statistical AnalysisWith Missing Data. Wiley, New York.Google Scholar
  28. Loeber, R. (1996). Developmental continuity, change, and pathways in male juvenile problem behaviors and delinquency. In Hawkins, J. D. (ed.), Delinquency and Crime: Current Theories. Cambridge University Press, New York, pp. 1–27.Google Scholar
  29. Loeber, R., Stouthamer-Loeber,M. S., Van Kammen,W. B., and Farrington, D. P. (1991). Initiation, escalation, and desistance in juvenile offending and their correlates. J. Crim. Law Criminol. 82: 36–82.Google Scholar
  30. Maguin, E., and Loeber, R. (1996). Academic performance and delinquency. In Tonry, M. (ed.), Crime and Justice (Vol. 20). University of Chicago Press, Chicago, pp. 145–264.Google Scholar
  31. Menard, S. (1995). Applied Logistic Regression Analysis. Sage, Thousand Oaks, CA.Google Scholar
  32. Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychol. Rev. 100: 674–701.CrossRefPubMedGoogle Scholar
  33. Moffitt, T. E., Caspi, A., Dickson, N., Silva, P., and Stanton, W. (1996). Childhood-onset versus adolescent-onset antisocial conduct problems in males: Natural history from ages 3 to 18 years. Dev. Psychopathol. 8: 399–424.Google Scholar
  34. Moss, H. B., and Lynch, K. G. (2001). Comorbid disruptive behavior disorder symptoms and their relationship to adolescent alcohol use disorders. Drug Alcohol Dependence 64: 75–83.CrossRefGoogle Scholar
  35. Muthén, B., and Muthén, L. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clin. Exp. Res. 24: 882–891.CrossRefGoogle Scholar
  36. Muthén, B., and Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 55: 463–469.CrossRefPubMedGoogle Scholar
  37. Muthén, L. K., and Muthén, B. O. (2001). Mplus User's Guide. Muthén & Muthén, Los Angeles, CA.Google Scholar
  38. Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric, group-based approach. Psychol. Methods 4: 139–157.CrossRefGoogle Scholar
  39. Nagin, D. S., Farrington, D. P., and Moffitt, T. E. (1995). Life-course trajectories of different types of offenders. Criminology 33: 111–139.Google Scholar
  40. Nagin, D. S., and Tremblay, R. E. (1999). Trajectories of boy's physical aggression, opposition, and hyperactivity on the path to physically violent and nonviolent juvenile delinquency. Child Dev. 70: 1181–1196.CrossRefPubMedGoogle Scholar
  41. Oetting, E. R., and Beauvais, F. (1990). Adolescent drug use: Findings of national and local surveys. J. Consult. Clin. Psychol. 58: 382–394.Google Scholar
  42. Patterson, G. R., Forgatch, M. S., Yoerger, K. L., and Stoolmiller, M. (1998).Variables that initiate and maintain an early-onset trajectory for juvenile offending. Dev. Psychopathol. 10: 531–547.CrossRefPubMedGoogle Scholar
  43. Patterson, G. R., and Yoerger, K. (1993). Developmental models for delinquent behavior. In Hodgins, S. (ed.), Mental Disorder and Crime. Sage, Newbury Park, CA, pp. 140–172.Google Scholar
  44. Procidano, M. E., and Heller, K. (1983). Measures of perceived social support from friends and from family: Three validational studies. Am. J. Commun. Psychol. 22: 1–24.Google Scholar
  45. Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. A ppl. Psychol. Meas. 1: 385–401.Google Scholar
  46. Raftery, A.E. (1995). Bayesian model selection in social research. Sociol. Methodol. 25: 111–164.Google Scholar
  47. Roeder, K., Lynch, K. G., and Nagin, D. S. (1999). Modeling uncertainty in latent class membership:Acase study in criminology. J. Am. Stat. Assoc. 94: 766–776.Google Scholar
  48. Schafer, J.L. (1999).NORM. Software forWindows 95/98/NT. Retrieved from Scholar
  49. Schafer, J. L., and Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behav. Res. 33: 545–571.Google Scholar
  50. Smith, D. A., and Brame, R. (1994). On the initiation and continuation of delinquency. Criminology 32: 607–629.Google Scholar
  51. Sroufe, L. A. (1990). Considering normal and abnormal together: The essence of developmental psychopathology. Dev. Psychopathol. 2: 335–348.Google Scholar
  52. Stouthamer-Loeber, M., Loeber, R., Wei, E., Farrington, D. P., and Wikstroem, P.-O. H. (2002). Risk and promotive effects in the explanation of persistent serious delinquency in boys. J. Consult. Clin. Psychol. 70: 111–123.CrossRefPubMedGoogle Scholar
  53. Vinokur, A., and Selzer, M. L. (1975). Desirable versus undesirable life events: Their relationships to stress and mental distress. J. Pers. Soc. Psychol. 32: 329–337.CrossRefPubMedGoogle Scholar
  54. White, H. R., Bates, M. E., and Buyske, S. (2001). Adolescence-limited versus persistent delinquency: Extending Moffitt's hypothesis into adulthood. J. Abnorm. Psychol. 110: 600–609.CrossRefPubMedGoogle Scholar
  55. White, H. R., and Labouvie, E. W. (1994). Generality versus specificity of problem behavior: Psychological and functional differences. J. Drug Issues 24: 55–74.Google Scholar
  56. Wiesner, M., and Capaldi, D. M. (2003). Relations of childhood and adolescent factors to offending trajectories of young men. J. Res. Crime Delinquency 40: 231–262.CrossRefGoogle Scholar
  57. Wiesner, M., Capaldi, D. M., and Patterson, G. R. (2003). Development of antisocial behavior and crime across the life-span from a social interactional perspective: The coercion model. In Akers, R. L., and Jensen, G. F. (eds.), Social Learning Theory and the Explanation of Crime: A Guide for the New Century (Advances in Criminological Theory, Vol. 11). Transaction, New Brunswick, NJ, pp. 317–337.Google Scholar
  58. Windle, M. (1987). Stressful life events, general mental health, and temperament among late adolescent females. J. Adolesc. Res. 2: 13–31.Google Scholar
  59. Windle, M. (2000). A latent growth curve model of delinquent activity among adolescents. Appl. Dev. Sci. 4: 193–207.CrossRefGoogle Scholar
  60. Windle, M., and Miller-Tutzauer,C. (1992). Confirmatory factor analysis and concurrent validity of the Perceived Social Support Family measure among adolescents. J. Marriage Fam. 54: 777–787.Google Scholar
  61. Winters, K. C., Stinchfield, R. D., Henly, G. A., and Schwartz, R. H. (1991). Validity of adolescent self-reports of alcohol and other drug involvement. Int. J. Addict. 25: 1379–1395.Google Scholar
  62. Yeaworth, R. C., York, J., Hussey, M. A., Ingle, M. E., and Goodwin, T. (1980). The development of an adolescent life change event scale. Adolescence 15: 91–97PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Margit Wiesner
  • Michael Windle

There are no affiliations available

Personalised recommendations