Skip to main content
Log in

Necessary and Sufficient Condition for the Functional Central Limit Theorem in Hölder Spaces

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let (X i ) i≥1 be an i.i.d. sequence of random elements in the Banach space B, S n X 1+⋅⋅⋅+X n and ξ n be the random polygonal line with vertices (k/n,S k ), k=0,1,...,n. Put ρ(h)=h α L(1/h), 0≤h≤1 with 0<α≤1/2 and L slowly varying at infinity. Let H 0ρ (B) be the Hölder space of functions x:[0,1]↦B, such that ∥x(t+h)−x(t)∥=o(ρ(h)), uniformly in t. We characterize the weak convergence in H 0ρ (B) of n −1/2 ξ n to a Brownian motion. In the special case where B=ℝ and ρ(h)=h α, our necessary and sufficient conditions for such convergence are E X 1=0 and P(|X 1|>t)=o(t p(α)) where p(α)=1/(1/2−α). This completes Lamperti (1962) invariance principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

references

  1. Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1987). Regular variation. In Encyclopaedia of Mathematics and Its Applications, Cambridge University Press.

  2. Ciesielski, Z. (1960). On the isomorphisms of the spaces Hα and m. Bull. Acad. Pol. Sci. Ser. Sci. Math. Phys. 8, 217-222.

    Google Scholar 

  3. Erickson, R. V. (1981). Lipschitz smoothness and convergence with applications to the central limit theorem for summation processes. Ann. Probab. 9, 831-851.

    Google Scholar 

  4. Hamadouche, D. (2000). Invariance principles in Hölder spaces. Portugal. Math. 57, 127-151.

    Google Scholar 

  5. Kerkyacharian, G., and Roynette, B. (1991). FrUne démonstration simple des théorèmes de Kolmogorov, Donsker, et Ito–Nisio. C. R. Acad. Sci. Paris Sér. I Math. 312, 877-882.

    Google Scholar 

  6. Kuelbs, J. (1973). The invariance principle for Banach space valued random variables. J. Multivariate Anal. 3, 161-172.

    Google Scholar 

  7. Lamperti, J. (1962). On convergence of stochastic processes. Trans. Amer. Math. Soc. 104, 430-435.

    Google Scholar 

  8. Ledoux, M., and Talagrand, M. (1991). Probability in Banach Spaces, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  9. Lévy, P. (1937). Théorie de l'addition des variables aléatoires, 2nd ed. 1954, Gauthier-Villars, Paris.

    Google Scholar 

  10. Račkauskas, A., and Suquet, C. (1998). On the Hölderian functional central limit theorem for i.i.d. random elements in Banach space. In Berkes, I., Csáki, E., Csörgö, M. (eds.), Limit Theorems in Probability and Statistics, Balatonlelle 1999, János Bolyai Mathematical Society, Budapest, 2002, Vol.2, pp. 485-498.

    Google Scholar 

  11. Račkauskas, A., and Suquet, C. (2001). Invariance principles for adaptive self-normalized partial sums processes. Stochastic Process. Appl. 95, 63-81.

    Google Scholar 

  12. Račkauskas, A., and Suquet, C. (2001). Hölder versions of Banach spaces valued random fields. Georgian Math. J. 8(2), 347-362.

    Google Scholar 

  13. Semadeni, Z. (1982). Schauder bases in Banach spaces of continuous functions. In Lecture Notes in Math., Vol.918, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  14. Suquet, C. (1999). Tightness in Schauder decomposable Banach spaces. Amer. Math. Soc. Transl. Ser. 2 193, 201-224.

    Google Scholar 

  15. Talagrand, M. (1989). Isoperimetry and integrability of the sum of independent Banach-space valued random variables. Ann. Probab. 17, 1546-1570.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Suquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Račkauskas, A., Suquet, C. Necessary and Sufficient Condition for the Functional Central Limit Theorem in Hölder Spaces. Journal of Theoretical Probability 17, 221–243 (2004). https://doi.org/10.1023/B:JOTP.0000020482.66224.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTP.0000020482.66224.6c

Navigation